Zeitschriftenartikel zum Thema „Non-identically distributed data“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Non-identically distributed data" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
A AlSaiary, Zakeia. „Analyzing Order Statistics of Non-Identically Distributed Shifted Exponential Variables in Numerical Data“. International Journal of Science and Research (IJSR) 13, Nr. 11 (05.11.2024): 1264–70. http://dx.doi.org/10.21275/sr241116231011.
Der volle Inhalt der QuelleTiurev, Konstantin, Peter-Jan H. S. Derks, Joschka Roffe, Jens Eisert und Jan-Michael Reiner. „Correcting non-independent and non-identically distributed errors with surface codes“. Quantum 7 (26.09.2023): 1123. http://dx.doi.org/10.22331/q-2023-09-26-1123.
Der volle Inhalt der QuelleZhu, Feng, Jiangshan Hao, Zhong Chen, Yanchao Zhao, Bing Chen und Xiaoyang Tan. „STAFL: Staleness-Tolerant Asynchronous Federated Learning on Non-iid Dataset“. Electronics 11, Nr. 3 (20.01.2022): 314. http://dx.doi.org/10.3390/electronics11030314.
Der volle Inhalt der QuelleWu, Jikun, JiaHao Yu und YuJun Zheng. „Research on Federated Learning Algorithms in Non-Independent Identically Distributed Scenarios“. Highlights in Science, Engineering and Technology 85 (13.03.2024): 104–12. http://dx.doi.org/10.54097/7newsv97.
Der volle Inhalt der QuelleJiang, Yingrui, Xuejian Zhao, Hao Li und Yu Xue. „A Personalized Federated Learning Method Based on Knowledge Distillation and Differential Privacy“. Electronics 13, Nr. 17 (06.09.2024): 3538. http://dx.doi.org/10.3390/electronics13173538.
Der volle Inhalt der QuelleBabar, Muhammad, Basit Qureshi und Anis Koubaa. „Investigating the impact of data heterogeneity on the performance of federated learning algorithm using medical imaging“. PLOS ONE 19, Nr. 5 (15.05.2024): e0302539. http://dx.doi.org/10.1371/journal.pone.0302539.
Der volle Inhalt der QuelleLayne, Elliot, Erika N. Dort, Richard Hamelin, Yue Li und Mathieu Blanchette. „Supervised learning on phylogenetically distributed data“. Bioinformatics 36, Supplement_2 (Dezember 2020): i895—i902. http://dx.doi.org/10.1093/bioinformatics/btaa842.
Der volle Inhalt der QuelleShahrivari, Farzad, und Nikola Zlatanov. „On Supervised Classification of Feature Vectors with Independent and Non-Identically Distributed Elements“. Entropy 23, Nr. 8 (13.08.2021): 1045. http://dx.doi.org/10.3390/e23081045.
Der volle Inhalt der QuelleLv, Yankai, Haiyan Ding, Hao Wu, Yiji Zhao und Lei Zhang. „FedRDS: Federated Learning on Non-IID Data via Regularization and Data Sharing“. Applied Sciences 13, Nr. 23 (04.12.2023): 12962. http://dx.doi.org/10.3390/app132312962.
Der volle Inhalt der QuelleZhang, Xufei, und Yiqing Shen. „Non-IID federated learning with Mixed-Data Calibration“. Applied and Computational Engineering 45, Nr. 1 (15.03.2024): 168–78. http://dx.doi.org/10.54254/2755-2721/45/20241048.
Der volle Inhalt der QuelleAlotaibi, Basmah, Fakhri Alam Khan und Sajjad Mahmood. „Communication Efficiency and Non-Independent and Identically Distributed Data Challenge in Federated Learning: A Systematic Mapping Study“. Applied Sciences 14, Nr. 7 (24.03.2024): 2720. http://dx.doi.org/10.3390/app14072720.
Der volle Inhalt der QuelleWang, Zhao, Yifan Hu, Shiyang Yan, Zhihao Wang, Ruijie Hou und Chao Wu. „Efficient Ring-Topology Decentralized Federated Learning with Deep Generative Models for Medical Data in eHealthcare Systems“. Electronics 11, Nr. 10 (12.05.2022): 1548. http://dx.doi.org/10.3390/electronics11101548.
Der volle Inhalt der QuelleAggarwal, Meenakshi, Vikas Khullar, Nitin Goyal, Abdullah Alammari, Marwan Ali Albahar und Aman Singh. „Lightweight Federated Learning for Rice Leaf Disease Classification Using Non Independent and Identically Distributed Images“. Sustainability 15, Nr. 16 (09.08.2023): 12149. http://dx.doi.org/10.3390/su151612149.
Der volle Inhalt der QuelleNiang, Aladji Babacar, Gane Samb Lo, Cherif Mamadou Traoré und Amadou Ball. „\(\ell^{\infty}\) Poisson invariance principles from two classical Poisson limit theorems and extension to non-stationary independent sequences“. Afrika Statistika 17, Nr. 1 (01.01.2022): 3125–43. http://dx.doi.org/10.16929/as/2022.3125.198.
Der volle Inhalt der QuelleNiang, Aladji Babacar, Gane Samb Lo, Cherif Mamadou Moctar Traoré und Amadou Ball. „\(\ell^{\infty}\) Poisson invariance principles from two classical Poisson limit theorems and extension to non-stationary independent sequences“. Afrika Statistika 17, Nr. 1 (01.01.2022): 3125–43. http://dx.doi.org/10.16929/as/3125.3115.198.
Der volle Inhalt der QuelleWu, Xia, Lei Xu und Liehuang Zhu. „Local Differential Privacy-Based Federated Learning under Personalized Settings“. Applied Sciences 13, Nr. 7 (24.03.2023): 4168. http://dx.doi.org/10.3390/app13074168.
Der volle Inhalt der QuelleBejenar, Iuliana, Lavinia Ferariu, Carlos Pascal und Constantin-Florin Caruntu. „Aggregation Methods Based on Quality Model Assessment for Federated Learning Applications: Overview and Comparative Analysis“. Mathematics 11, Nr. 22 (10.11.2023): 4610. http://dx.doi.org/10.3390/math11224610.
Der volle Inhalt der QuelleTayyeh, Huda Kadhim, und Ahmed Sabah Ahmed AL-Jumaili. „Balancing Privacy and Performance: A Differential Privacy Approach in Federated Learning“. Computers 13, Nr. 11 (24.10.2024): 277. http://dx.doi.org/10.3390/computers13110277.
Der volle Inhalt der QuelleLiu, Ying, Zhiqiang Wang, Shufang Pang und Lei Ju. „Distributed Malicious Traffic Detection“. Electronics 13, Nr. 23 (28.11.2024): 4720. http://dx.doi.org/10.3390/electronics13234720.
Der volle Inhalt der QuelleLeroy, Fanny, Jean-Yves Dauxois und Pascale Tubert-Bitter. „On the Parametric Maximum Likelihood Estimator for Independent but Non-identically Distributed Observations with Application to Truncated Data“. Journal of Statistical Theory and Applications 15, Nr. 1 (2016): 96. http://dx.doi.org/10.2991/jsta.2016.15.1.8.
Der volle Inhalt der QuelleDIB, ABDESSAMAD, MOHAMED MEHDI HAMRI und ABBES RABHI. „ASYMPTOTIC NORMALITY SINGLE FUNCTIONAL INDEX QUANTILE REGRESSION UNDER RANDOMLY CENSORED DATA“. Journal of Science and Arts 22, Nr. 4 (30.12.2022): 845–64. http://dx.doi.org/10.46939/j.sci.arts-22.4-a07.
Der volle Inhalt der QuelleJahani, Khalil, Behzad Moshiri und Babak Hossein Khalaj. „A Survey on Data Distribution Challenges and Solutions in Vertical and Horizontal Federated Learning“. Journal of Artificial Intelligence, Applications, and Innovations 1, Nr. 2 (2024): 55–71. https://doi.org/10.61838/jaiai.1.2.5.
Der volle Inhalt der QuelleZhang, Jianfei, und Zhongxin Li. „A Clustered Federated Learning Method of User Behavior Analysis Based on Non-IID Data“. Electronics 12, Nr. 7 (31.03.2023): 1660. http://dx.doi.org/10.3390/electronics12071660.
Der volle Inhalt der QuelleChen, Runzi, Shuliang Zhao und Zhenzhen Tian. „A Multiscale Clustering Approach for Non-IID Nominal Data“. Computational Intelligence and Neuroscience 2021 (11.10.2021): 1–10. http://dx.doi.org/10.1155/2021/8993543.
Der volle Inhalt der QuelleYan, Jiaxing, Yan Li, Sifan Yin, Xin Kang, Jiachen Wang, Hao Zhang und Bin Hu. „An Efficient Greedy Hierarchical Federated Learning Training Method Based on Trusted Execution Environments“. Electronics 13, Nr. 17 (06.09.2024): 3548. http://dx.doi.org/10.3390/electronics13173548.
Der volle Inhalt der QuelleGao, Huiguo, Mengyuan Lee, Guanding Yu und Zhaolin Zhou. „A Graph Neural Network Based Decentralized Learning Scheme“. Sensors 22, Nr. 3 (28.01.2022): 1030. http://dx.doi.org/10.3390/s22031030.
Der volle Inhalt der QuelleZhou, Yuwen, Yuhan Hu, Jing Sun, Rui He und Wenjie Kang. „A Semi-Federated Active Learning Framework for Unlabeled Online Network Data“. Mathematics 11, Nr. 8 (21.04.2023): 1972. http://dx.doi.org/10.3390/math11081972.
Der volle Inhalt der QuelleWang, Jinru, Zijuan Geng und Fengfeng Jin. „Optimal Wavelet Estimation of Density Derivatives for Size-Biased Data“. Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/512634.
Der volle Inhalt der QuelleEfthymiadis, Filippos, Aristeidis Karras, Christos Karras und Spyros Sioutas. „Advanced Optimization Techniques for Federated Learning on Non-IID Data“. Future Internet 16, Nr. 10 (13.10.2024): 370. http://dx.doi.org/10.3390/fi16100370.
Der volle Inhalt der QuelleSeol, Mihye, und Taejoon Kim. „Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data“. Sensors 23, Nr. 3 (19.01.2023): 1152. http://dx.doi.org/10.3390/s23031152.
Der volle Inhalt der QuelleLee, Suchul. „Distributed Detection of Malicious Android Apps While Preserving Privacy Using Federated Learning“. Sensors 23, Nr. 4 (15.02.2023): 2198. http://dx.doi.org/10.3390/s23042198.
Der volle Inhalt der QuelleZhao, Puning, Fei Yu und Zhiguo Wan. „A Huber Loss Minimization Approach to Byzantine Robust Federated Learning“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 19 (24.03.2024): 21806–14. http://dx.doi.org/10.1609/aaai.v38i19.30181.
Der volle Inhalt der QuelleValente Neto, Ernesto, Solon Peixoto und Júlio César Anjos. „EnBaSe: Enhancing Image Classification in IoT Scenarios through Entropy-Based Selection of Non-IID Data“. Learning and Nonlinear Models 23, Nr. 1 (28.02.2025): 49–66. https://doi.org/10.21528/lnlm-vol23-no1-art4.
Der volle Inhalt der QuelleFirdaus, Muhammad, Siwan Noh, Zhuohao Qian, Harashta Tatimma Larasati und Kyung-Hyune Rhee. „Personalized federated learning for heterogeneous data: A distributed edge clustering approach“. Mathematical Biosciences and Engineering 20, Nr. 6 (2023): 10725–40. http://dx.doi.org/10.3934/mbe.2023475.
Der volle Inhalt der QuelleChu, Patrick K. K. „Study on the Non-Random and Chaotic Behavior of Chinese Equities Market“. Review of Pacific Basin Financial Markets and Policies 06, Nr. 02 (Juni 2003): 199–222. http://dx.doi.org/10.1142/s0219091503001055.
Der volle Inhalt der QuelleKnight, John L., und Stephen E. Satchell. „The Cumulant Generating Function Estimation Method“. Econometric Theory 13, Nr. 2 (April 1997): 170–84. http://dx.doi.org/10.1017/s0266466600005715.
Der volle Inhalt der QuelleGao, Yuan. „Federated learning: Impact of different algorithms and models on prediction results based on fashion-MNIST data set“. Applied and Computational Engineering 86, Nr. 1 (31.07.2024): 210–18. http://dx.doi.org/10.54254/2755-2721/86/20241594.
Der volle Inhalt der QuelleChoi, Jai Won, Balgobin Nandram und Boseung Choi. „Combining Correlated P-values From Primary Data Analyses“. International Journal of Statistics and Probability 11, Nr. 6 (20.10.2022): 12. http://dx.doi.org/10.5539/ijsp.v11n6p12.
Der volle Inhalt der QuelleTan, Qingjie, Bin Wang, Hongfeng Yu, Shuhui Wu, Yaguan Qian und Yuanhong Tao. „DP-FEDAW: FEDERATED LEARNING WITH DIFFERENTIAL PRIVACY IN NON-IID DATA“. International Journal of Engineering Technologies and Management Research 10, Nr. 5 (20.05.2023): 34–49. http://dx.doi.org/10.29121/ijetmr.v10.i5.2023.1328.
Der volle Inhalt der QuelleShan, Ang, und Fengkai Yang. „Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm“. Mathematics 9, Nr. 6 (10.03.2021): 590. http://dx.doi.org/10.3390/math9060590.
Der volle Inhalt der QuelleAgrawal, Shaashwat, Sagnik Sarkar, Mamoun Alazab, Praveen Kumar Reddy Maddikunta, Thippa Reddy Gadekallu und Quoc-Viet Pham. „Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning“. Computational Intelligence and Neuroscience 2021 (18.11.2021): 1–10. http://dx.doi.org/10.1155/2021/7156420.
Der volle Inhalt der QuelleZhang, You, Jin Wang, Liang-Chih Yu, Dan Xu und Xuejie Zhang. „Multi-Attribute Multi-Grained Adaptation of Pre-Trained Language Models for Text Understanding from Bayesian Perspective“. Proceedings of the AAAI Conference on Artificial Intelligence 39, Nr. 24 (11.04.2025): 25967–75. https://doi.org/10.1609/aaai.v39i24.34791.
Der volle Inhalt der QuelleZhang, Kainan, Zhipeng Cai und Daehee Seo. „Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data“. Wireless Communications and Mobile Computing 2023 (03.02.2023): 1–13. http://dx.doi.org/10.1155/2023/8545101.
Der volle Inhalt der QuelleHu, Cheng, Scarlett Chen und Zhe Wu. „Economic Model Predictive Control of Nonlinear Systems Using Online Learning of Neural Networks“. Processes 11, Nr. 2 (20.01.2023): 342. http://dx.doi.org/10.3390/pr11020342.
Der volle Inhalt der QuelleZhou, Yueying, Gaoxiang Duan, Tianchen Qiu, Lin Zhang, Li Tian, Xiaoying Zheng und Yongxin Zhu. „Personalized Federated Learning Incorporating Adaptive Model Pruning at the Edge“. Electronics 13, Nr. 9 (01.05.2024): 1738. http://dx.doi.org/10.3390/electronics13091738.
Der volle Inhalt der QuelleZhao, Bo, Peng Sun, Tao Wang und Keyu Jiang. „FedInv: Byzantine-Robust Federated Learning by Inversing Local Model Updates“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 8 (28.06.2022): 9171–79. http://dx.doi.org/10.1609/aaai.v36i8.20903.
Der volle Inhalt der QuelleYang, Dezhi, Xintong He, Jun Wang, Guoxian Yu, Carlotta Domeniconi und Jinglin Zhang. „Federated Causality Learning with Explainable Adaptive Optimization“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 15 (24.03.2024): 16308–15. http://dx.doi.org/10.1609/aaai.v38i15.29566.
Der volle Inhalt der QuelleTursunboev, Jamshid, Yong-Sung Kang, Sung-Bum Huh, Dong-Woo Lim, Jae-Mo Kang und Heechul Jung. „Hierarchical Federated Learning for Edge-Aided Unmanned Aerial Vehicle Networks“. Applied Sciences 12, Nr. 2 (11.01.2022): 670. http://dx.doi.org/10.3390/app12020670.
Der volle Inhalt der QuelleLee, Yi-Chen, Wei-Che Chien und Yao-Chung Chang. „FedDB: A Federated Learning Approach Using DBSCAN for DDoS Attack Detection“. Applied Sciences 14, Nr. 22 (07.11.2024): 10236. http://dx.doi.org/10.3390/app142210236.
Der volle Inhalt der QuelleSharma, Shagun, Kalpna Guleria, Ayush Dogra, Deepali Gupta, Sapna Juneja, Swati Kumari und Ali Nauman. „A privacy-preserved horizontal federated learning for malignant glioma tumour detection using distributed data-silos“. PLOS ONE 20, Nr. 2 (11.02.2025): e0316543. https://doi.org/10.1371/journal.pone.0316543.
Der volle Inhalt der Quelle