Dissertationen zum Thema „Optimal control problems involving partial differential equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-17 Dissertationen für die Forschung zum Thema "Optimal control problems involving partial differential equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Tsang, Siu Chung. „Preconditioners for linear parabolic optimal control problems“. HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/464.
Der volle Inhalt der QuelleYousept, Irwin. „Optimal control of partial differential equations involving pointwise state constraints: regularization and applications“. Göttingen Cuvillier, 2008. http://d-nb.info/990426513/04.
Der volle Inhalt der QuelleFlaig, Thomas G. [Verfasser]. „Discretization strategies for optimal control problems with parabolic partial differential equations / Thomas G. Flaig“. München : Verlag Dr. Hut, 2013. http://d-nb.info/103729176X/34.
Der volle Inhalt der QuelleTrautwein, Christoph [Verfasser], und Peter [Gutachter] Benner. „Optimal control problems constrained by stochastic partial differential equations / Christoph Trautwein ; Gutachter: Peter Benner“. Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2019. http://d-nb.info/1220034959/34.
Der volle Inhalt der QuelleLee, Jangwoon. „Analysis and finite element approximations of stochastic optimal control problems constrained by stochastic elliptic partial differential equations“. [Ames, Iowa : Iowa State University], 2008.
Den vollen Inhalt der Quelle findenQi, Meiyu [Verfasser], und Ronald H. W. [Akademischer Betreuer] Hoppe. „Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations / Meiyu Qi. Betreuer: Ronald H. W. Hoppe“. Augsburg : Universität Augsburg, 2012. http://d-nb.info/1077700849/34.
Der volle Inhalt der QuellePearson, John W. „Fast iterative solvers for PDE-constrained optimization problems“. Thesis, University of Oxford, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581405.
Der volle Inhalt der QuelleBénézet, Cyril. „Study of numerical methods for partial hedging and switching problems with costs uncertainty“. Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7079.
Der volle Inhalt der QuelleIn this thesis, we give some contributions to the theoretical and numerical study to some stochastic optimal control problems, and their applications to financial mathematics and risk management. These applications are related to weak pricing and hedging of financial products and to regulation issues. We develop numerical methods in order to compute efficiently these quantities, when no closed formulae are available. We also study backward stochastic differential equations linked to some new switching problems, with costs uncertainty
Flaig, Thomas Gerhard [Verfasser], Thomas [Akademischer Betreuer] Apel, Fredi [Akademischer Betreuer] Tröltzsch und Boris [Akademischer Betreuer] Vexler. „Discretization strategies for optimal control problems with parabolic partial differential equations / Thomas Gerhard Flaig. Universität der Bundeswehr München, Fakultät für Bauingenieurwesen und Umweltwissenschaften. Gutachter: Thomas Apel ; Fredi Tröltzsch ; Boris Vexler. Betreuer: Thomas Apel“. Neubiberg : Universitätsbibliothek der Universität der Bundeswehr, 2013. http://d-nb.info/1037118820/34.
Der volle Inhalt der QuelleFlaig, Thomas G. [Verfasser], Thomas [Akademischer Betreuer] Apel, Fredi [Akademischer Betreuer] Tröltzsch und Boris [Akademischer Betreuer] Vexler. „Discretization strategies for optimal control problems with parabolic partial differential equations / Thomas Gerhard Flaig. Universität der Bundeswehr München, Fakultät für Bauingenieurwesen und Umweltwissenschaften. Gutachter: Thomas Apel ; Fredi Tröltzsch ; Boris Vexler. Betreuer: Thomas Apel“. Neubiberg : Universitätsbibliothek der Universität der Bundeswehr, 2013. http://d-nb.info/1037118820/34.
Der volle Inhalt der QuelleTrey, Baptiste. „Existence et régularité des formes optimales pour des problèmes d'optimisation spectrale Free boundary regularity for a multiphase shape optimization problem. Communications in Partial Dfferential Equations Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form Existence and regularity of optimal shapes for elliptic operators with drift. Calculus of Variations and Partial Differential Equations“. Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM019.
Der volle Inhalt der QuelleIn this thesis, we study the existence and the regularity of optimal shapes for some spectral optimization problems involving an elliptic operator with Dirichlet boundary condition.First of all, we consider the problem of minimizing the principal eigenvalue of an operator with bounded drift under inclusion and volume constraints.Whether the drift is fixed or not, this problem admits solutions among the class of quasi-open sets, and if the drift is furthermore the gradient of a Lipschitz continuous function, then the solutions are open sets and C^{1,alpha}-regular except on a set of exceptional points.Next, we study in dimension two the regularity of the solutions to a multi-phase optimization problem for the first eigenvalue of the Dirichlet Laplacian.Finally, we focus on the optimal sets for the sum of the first k eigenvalues of an operator in divergence form. We prove that the first k eigenfunctions on an optimal set are Lipschitz continuous so that the optimal sets are open sets, and we then study the regularity of the boundary of the optimal sets
Moyano, Gabriel Eduardo. „Modelo de dinámica y control de epidemia de dengue con información a gran escala“. Doctoral thesis, 2016. http://hdl.handle.net/11086/4062.
Der volle Inhalt der QuelleEl objetivo principal de este trabajo es resolver un problema de control con el fin de minimizar un brote epidémico de fiebre dengue mediante una estrategia de fumigación óptima. El trabajo se divide en dos partes. La primera consiste en plantear un problema de control con el objetivo de minimizar las personas expuesta a la enfermedad y los costos de fumigación, sujeto sobre un modelo de la dinámica espacio-temporal de un brote de fiebre dengue. La segunda parte incluye el desarrollo de un algoritmo eficiente para resolver el problema de control basado en el método del lagrangiano aumentado.
The main objective of this work is to solve a control problem in order to minimize an outbreak of dengue fever through a strategy of optimal spraying. The work is divided into two parts. The first is to pose a control problem in order to minimize people exposed to the disease and fumigation costs, subject to a model of the spatiotemporal dynamics of an outbreak of dengue fever. The second part includes the development of an efficient algorithm to solve the control problem based method increased Lagrangian.
Heese, Harald. „Theory and Numerics for Shape Optimization in Superconductivity“. Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-B3F2-0.
Der volle Inhalt der QuelleWu, Yen-Lin, und 吳彥霖. „Solutions of Partial Differential Equations Arising from Stochastic Optimal Control Problems and Applications“. Thesis, 2014. http://ndltd.ncl.edu.tw/handle/59434313615487010551.
Der volle Inhalt der Quelle國立中央大學
數學系
102
This dissertation is concerned with studying some second order elliptic partial differential equations. We are devote to establishing some qualitative properties of solutions, including existence, uniqueness and structure of solutions to three specific types of nonlinear elliptic equations. In Part 1, we study a gradient constraint equation which is related to a stochastic optimal control problem. We offer the existence and uniqueness of positive radial solutions with certain behavior under weaker conditions on nonlinearity. In Part 2, we consider a semilinear elliptic equation on the hyperbolic space. The asymptotic behavior, existence and uniqueness of positive singular solutions at the origin are proved. In addition, we discuss the structure of solutions of various types via the Pohozaev identity. Finally, in our last chapter, we deal with the Hardy-Sobolev equations and investigate behaviors, existence and uniqueness of solutions for different exponents.
Fischer, Julia [Verfasser]. „Optimal control problems governed by nonlinear partial differential equations and inclusions / vorgelegt von Julia Fischer“. 2010. http://d-nb.info/1004057067/34.
Der volle Inhalt der QuelleSardar, Bidhan Chandra. „Study of Optimal Control Problems in a Domain with Rugose Boundary and Homogenization“. Thesis, 2016. http://hdl.handle.net/2005/2883.
Der volle Inhalt der QuelleDelgadino, Matías Gonzalo. „Teoría de control aplicada a tratamientos de quimioterapia“. Bachelor's thesis, 2011. http://hdl.handle.net/11086/53.
Der volle Inhalt der QuelleEn este trabajo se da una breve introducción y algunas primeras herramientas para la teoría de control y los sistemas de ecuaciones diferenciales con delay. Se utilizan estas herramientas para analizar dos modelos, con miradas diferentes del crecimiento tumoral existentes en la literatura y se propone un nuevo modelo híbrido que contemple no solo la dinámica continua sino también elementos discretos, de forma de buscar un protocolo óptimo de tratamientos de quimioterapia. Para esto, se propone y prueba un teorema donde se caracteriza la derivada del valor final de unavariable con respecto a las duraciones de un sistema con sitches. En la última sección, se encuentra una experiencia numérica mostrando la factibilidad de implementar el teorema anterior al problema propuesto.
Matías Gonzalo Delgadino.