Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Optimisation Topologie“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Optimisation Topologie" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Optimisation Topologie"
Raj Kumar S, Solomon, und P. Nallasamy. „Topology Optimisation of Passive Constrained Layer Damping - A Comprehensive Review“. International Journal of Scientific Engineering and Research 11, Nr. 5 (27.05.2023): 78–84. https://doi.org/10.70729/se23516171228.
Der volle Inhalt der QuelleChiu, Louis N. S., Daniel Stojanov, Bernard Rolfe und Wen Yi Yan. „Effect of Optimisation Parameters in Topology Optimisation“. Key Engineering Materials 725 (Dezember 2016): 529–34. http://dx.doi.org/10.4028/www.scientific.net/kem.725.529.
Der volle Inhalt der QuelleDongre, Prof Ganesh, Parag Kshirsagar, Shruti Kulat, Bhargav Kulkarni, Vedant Kulkarni und Sanket More. „Topology Optimisation of Piston“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 5 (31.05.2023): 2978–83. http://dx.doi.org/10.22214/ijraset.2023.51449.
Der volle Inhalt der QuelleAit Ouchaoui, A., M. Nassraoui und B. Radi. „Numerical investigation of the effect of topology optimisation methods parameters in the topology quality, the strength, and the computational cost“. Archives of Materials Science and Engineering 123, Nr. 2 (01.10.2023): 55–71. http://dx.doi.org/10.5604/01.3001.0054.2492.
Der volle Inhalt der QuelleRibeiro, Tiago P., Luís F. A. Bernardo und Jorge M. A. Andrade. „Topology Optimisation in Structural Steel Design for Additive Manufacturing“. Applied Sciences 11, Nr. 5 (27.02.2021): 2112. http://dx.doi.org/10.3390/app11052112.
Der volle Inhalt der QuelleFenci, Giulia Evelina, Neil G. R. Currie und Greg Hardie. „Topology Optimisation: A case study.“ IABSE Symposium Report 108, Nr. 1 (19.04.2017): 64–65. http://dx.doi.org/10.2749/222137817821232450.
Der volle Inhalt der QuelleSafonov, Alexander, und Andrew Adamatzky. „Computing via material topology optimisation“. Applied Mathematics and Computation 318 (Februar 2018): 109–20. http://dx.doi.org/10.1016/j.amc.2017.08.030.
Der volle Inhalt der QuelleSafonov, Alexander, und Jeff Jones. „Physarum computing and topology optimisation“. International Journal of Parallel, Emergent and Distributed Systems 32, Nr. 5 (16.08.2016): 448–65. http://dx.doi.org/10.1080/17445760.2016.1221073.
Der volle Inhalt der QuelleLowe, Thomas, und Joshua Pinskier. „Tree Reconstruction Using Topology Optimisation“. Remote Sensing 15, Nr. 1 (28.12.2022): 172. http://dx.doi.org/10.3390/rs15010172.
Der volle Inhalt der QuelleHurtado-Pérez, A. B., A. de J. Pablo-Sotelo, F. Ramírez-López, J. J. Hernández-Gómez und M. F. Mata-Rivera. „Iterative design of satellite structures and topology optimisation methods“. Journal of Physics: Conference Series 2804, Nr. 1 (01.07.2024): 012001. http://dx.doi.org/10.1088/1742-6596/2804/1/012001.
Der volle Inhalt der QuelleDissertationen zum Thema "Optimisation Topologie"
Ezran, Philippe. „Optimisation de la Topologie des Réseaux Sans Fils“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC014/document.
Der volle Inhalt der QuelleThe wireless telecommunication sector is presently facing a tremendous growth of demand for higher data rates, driven by the development of mobile data services. This development makes the available spectrum scarcer and scarcer and requires solutions in order to optimize the use of its limited resources.The main challenge wireless networks are facing is to maximize availability, resiliency and Quality of Service, while minimizing costs and ensuring fair resource allocation among users.The present thesis will try to present solutions to these issues and will focus on three topics.On the first topic, the purpose is to find the ring-based topology which optimizes availability. It will be shown that algorithms which have been developed in the field of graph theory can be used efficiently to define in polynomial time the optimal ring network topology if the rings are small (two nodes in addition to the aggregation node). For bigger rings, the problem will be NP-hard. The second topic deals with polarization. We propose an innovative solution which can improve spectral efficiency in wireless ring networks by up to 50% in comparison with the state of the art. The proposed paradigm brings new perspectives regarding topology optimization and channel allocation.The third topic deals with resource allocation. We question the present approach based on optimization of network effciency. We show that this approach is similar to Bernoulli's expected utility model, which has been disproved by Allais' paradoxes. For this reason, we introduce the concept of unfairness aversion and consider the question of resource allocation as a trade-off between network efficiency and fairness
Ayala, Hernandez Juan Emmanuel. „Optimisation de la topologie des robots dynamiquement équilibrés“. Thesis, Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0026.
Der volle Inhalt der QuelleDynamic balancing is an important field of study in high-speed robotics and spatial robots. Taking into account robot dynamic balancing performance for robot design leads to low base vibrations, high precision and short cycle times. With the aim to develop a comprehensive robot design for dynamic balancing, structural topology optimization is studied in this research work as a tool for designing dynamically balanced robots, also called reactionless robots. The suitability of the proposed methodology is confirmed by accomplishing an optimized design of a reactionless four-bar linkage and the partial dynamic balancing of five-bar robotic mechanism. The significance of the dynamically balanced four-bar linkage is related to the possibility to exploit this optimized linkage as a special leg for building reactionless robots. Besides, the five-bar robot is very important due to its industrial applications, where it is typically used in pick-and-place operations
Jiang, Fei. „Optimisation de la topologie de grands réseaux de neurones“. Paris 11, 2009. http://www.theses.fr/2009PA112211.
Der volle Inhalt der QuelleIn this dissertation, we present our study regarding the influence of the topology on the learning performances of neural networks with complex topologies. Three different neural networks have been investigated: the classical Self-Organizing Maps (SOM) with complex graph topology, the Echo States Network (ESN) and the Standard Model Features(SMF). In each case, we begin by comparing the performances of different topologies for the same task. We then try to optimize the topology of some neural network in order to improve such performance. The first part deals with Self-Organizing Maps, and the task is the standard classification of handwritten digits from the MNIST database. We show that topology has a small impact on performance and robustness to neuron failures, at least at long learning times. Performance may however be increased by almost 10% by artificial evolution of the network topology. In our experimental conditions, the evolved networks are more random than their parents, but display a more heterogeneous degree distribution. In the second part, we propose to apply CMA-ES, the state-of-the-art method in evolutionary continuous parameter optimization, to the evolutionary learning of the parameters of an Echo State Network (the Readout weights, of course, but also, Spectral Radius, Slopes of the neurons active function). First, a standard supervised learning problem is used to validate the approach and compare it to the original one. But the flexibility of Evolutionary optimization allows us to optimize not only the outgoing weights but also, or alternatively, other ESN parameters, sometimes leading to improved results. The classical double pole balancing control problem is used to demonstrate the feasibility of evolutionary reinforcement learning of ESN. We show that the evolutionary ESN obtain results that are comparable with those of the best topology-learning neuro-evolution methods. Finally, the last part presents our initial research of the SMF - a visual object recognition model which is inspired by the visual cortex. Two version based on SMF are applied to the PASCAL Visual multi-Object recognition Challenge (VOC2008). The long terms goal is to find the optimal topology of the SMF model, but the computation cost is however too expensive to optimize the complete topology directly. So as a first step, we apply an Evolutionary Algorithm to auto-select the feature used by the systems. We show that, for the VOC2008 challenge, with only 20% selected feature, the system can perform as well as with all 1000 randomly selected feature
Gurtner, Gérald. „Géométrie, topologie et optimisation des réseaux et structures cellulaires“. Paris 7, 2011. http://www.theses.fr/2011PA077165.
Der volle Inhalt der QuelleSome particular networks of very different essences - electrical, thermal, fluidic, mecanic - exhibit, in a first approximation, some strong mathematical analogies, allowing us to conduct a common analysis of their emergent properties - electrical, thermal or fluidic conductivity, and elastic moduli. With a variationnal approach, we established absolute bounds on these quantifies as well as a set of geometrical necessary and sufficient conditions (NSC) to reach them. These conditions lead to new optimal structures, both in two and three dimensions. Thanks to a numerical program, which allowed us to verify these predictions, we then characterized the bending/streching transition which appears in fibrous networks. With the help of the NSC, we computed analytically some statistic, microscopic features of these networks, which might be of importance in the future to understand this phenomenon, as our analyze suggests it. Moreover, we used the programm to investigate the problem of the junctions' energy and showed the presence of several transitions, described by power laws. Finally, we calculated the macroscopic characteristics of some networks close to the optimality, and introduced a new average quantity based on the NSC which seemed to be of importance to quantify this deviation from optimality
Jedidi, Adel. „Modélisation et optimisation de la topologie des réseaux mobiles GSM“. Université Joseph Fourier (Grenoble), 2004. http://www.theses.fr/2004GRE10064.
Der volle Inhalt der QuelleThe growth and the complexity of cellular systems aim at the development of optimization procedures for the network design. The network design consists in finding the best sites location and base stations parameters settings. To provide suitable network solutions, the automation requires mathematical formulations of technical and economical objectives. On previous research works, radio coverage, traffic capacity and field overlap were the main factors considered as optimization criteria. These factors brought very good results on network radio performance based on pixel performance analysis. Nevertheless, they led to a poor network organization that i didn't meet the global network performance issued from theorical cellular concept : neighborhood management, cells splitting ability, network densification. . . Experts conclude on non-feasibility of network solutions from automation due to lack of acceptable topological properties. Our work proposes new mathematical models dealing with the network structure based on the theorical cellular concept. These models drive to several formulations of neighborhood and densification which give novel properties to network solutions. We also underline the high importance of multicriteria optimization for these problems. Then we describe evolutionary algorithms for the optimization of site location, station positioning and antenna parameter settings. And we give some results on real-life networks for the antenna parameters settings problem and compared them to previous approaches
Zhang, Mengyi. „Optimisation de la couverture de communication et de mesure dans les réseaux de capteurs“. Thesis, Reims, 2015. http://www.theses.fr/2015REIMS042/document.
Der volle Inhalt der QuelleA wireless sensor network consists of a set of small autonomous units that interact via a network built by their communication modules. They observe their environment by their sensors and then they manage this information according to their computational capacity and storage. The coverage is the only representation available to the sensor network of its environment. Therefore, it is essential to quantify the quality of coverage especially related to the presence of holes. Our work uses algebraic topology to solve these problems. We first define a notion of the coverage hole in a scalar field, which measures the quality of the estimation by the sensor network without knowing the positions of the sensors. It allows the simplicial homology tool to determine the quality of the overall coverage and put certain redundant sensors into sleeping mode with the guarantee of the coverage. Then, to make the previous result easier to compute by a sensor network, the discrete Morse theory is used. It allows a distributed computation of the previous homology groups while supporting scalability necessary in sensor networks domain. Finally, one flexible approach that allows time varying tracking which allows a coverage is proposed in a distributed way. When the environment changes, this approach can not only guarantee the capability of monitoring of coverage quality, but also proposes a scheme to send to sleep the redundant sensors in order to increase the lifetime of the sensor network with adequate coverage
Laurain, Antoine. „Domaines singulièrement perturbés en optimisation de formes“. Nancy 1, 2006. http://docnum.univ-lorraine.fr/public/SCD_T_2006_0178_LAURAIN.pdf.
Der volle Inhalt der QuelleIn shape optimization, the main results concerning the case of domains with smooth boundaries and smooth perturbations of these domains are well-known, whereas the study of non-smooth domains, such as domains with cracks for instance, and the study of singular perturbations such as the creation of a hole in a domain is more recent and complex. This new field of research is motivated by multiple applications, since the smoothness assumptions are not fulfilled in the general case. These singular perturbations can be handled now with new and efficient tools like topological derivative. In the first part, the structure of the shape derivative for domains with cracks is studied. In the case of a smooth domain, with boundary of class C1 or lipschitzian for instance, the derivative depends only on the perturbations of the boundary of the domain in the normal direction. This structure theorem is no longer valid for domains with cracks. We extend here the structure theorem to domains with cracks in any dimension for the first and second derivatives. In dimension two, we get the usual result, i. E. The shape derivative depends also on the tangential components of the deformation at the tips of the crack. In higher dimension, a new term appears in addition to the classical one, coming from the boundary of the manifold representing the crack. In the second part, the singular perturbation of a domain is approximated by using self adjoint extensions of operators. This approximation is first described, then it is applied to a shape optimization problem. An approximated energy functional can be defined for this model problem, and we obtain in particular the usual formula of the topological derivative. In the third part, a numerical application of the topological and shape derivatives is proposed for a non-linear problem. The problem consists in maximizing the energy associated to a Signorini problem in a domain . The evolution of the domain is done with the help of a levelset method to handle easily topological changes
Noblet, Vincent Heitz Fabrice Armspach Jean-Paul. „Recalage non rigide d'images cérébrales 3D avec contrainte de conservation de la topologie“. Strasbourg : Université Louis Pasteur, 2006. http://eprints-scd-ulp.u-strasbg.fr:8080/538/01/THESE_NOBLET.PDF.
Der volle Inhalt der QuellePagnacco, Emmanuel. „Optimisation topologique des structures de type coque“. Rouen, 1998. http://www.theses.fr/1998ROUES089.
Der volle Inhalt der QuelleNoblet, Vincent. „Recalage non rigide d'images cérébrales 3D avec contrainte de conservation de la topologie“. Université Louis Pasteur (Strasbourg) (1971-2008), 2006. https://publication-theses.unistra.fr/public/theses_doctorat/2006/NOBLET_Vincent_2006.pdf.
Der volle Inhalt der QuelleThis dissertation deals with non-rigid registration of 3D inter-patient cerebral images. The deformation model considered is based on a hierarchical parametric representation using B-spline basis functions, the parameters being estimated by minimizing a cost function relying on the intensity difference between images (monomodal case). The main contribution of this work is to warrant the estimated transformation to preserve the integrity of warped structures in the 3D case. This property, called topology preservation, is ensured by imposing the positivity of the jacobian of the transformation on the underlying continuous domain of the image. This constrained optimization problem is solved by resorting to interval analysis techniques. Furthermore, other aspects of the registration problem are considered, namely the choice of the similarity criterion and its symmetrization, the regularization of the deformation field and the intensity normalization between images. An original intensity normalization procedure, based on the estimation of a Gaussian mixture model of the joint histogram, is presented. This method, initially proposed to overcome some problems encountered with monomodal image registration, has been extended to the registration of multimodal MRI images. Finally, a validation framework is devised in order to evaluate the influence of the different parameters of the method and to carry out comparisons with other registration methods (affine registration and the demons algorithm)
Bücher zum Thema "Optimisation Topologie"
Bendsøe, Martin P. Optimization of structural topology, shape, and material. Berlin: Springer, 1995.
Den vollen Inhalt der Quelle findenOlivier, Pironneau, Hrsg. Applied shape optimization for fluids. 2. Aufl. Oxford: Oxford University Press, 2010.
Den vollen Inhalt der Quelle findenTaylor, Chris, Rhodri Davies und Carole Twining. Statistical Models of Shape: Optimisation and Evaluation. Springer, 2014.
Den vollen Inhalt der Quelle findenZhou, Shiwei. Implementation of Three-Dimensional Structural Topology Optimisation: Theory and Programming. Elsevier Science & Technology Books, 2019.
Den vollen Inhalt der Quelle findenAnsari, Qamrul Hasan, Saleh Abdullah R. Al-Mezel und Falleh Rajallah M. Al-Solamy. Fixed Point Theory, Variational Analysis, and Optimization. Taylor & Francis Group, 2014.
Den vollen Inhalt der Quelle findenAnsari, Qamrul Hasan, Saleh Abdullah R. Al-Mezel und Falleh Rajallah M. Al-Solamy. Fixed Point Theory, Variational Analysis, and Optimization. Taylor & Francis Group, 2014.
Den vollen Inhalt der Quelle findenFixed point theory, variational analysis, and optimization. Boca Raton: CRC Press, Taylor & Francis Group, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Optimisation Topologie"
Ranjan, Rajit, Can Ayas, Matthijs Langelaar und Fred van Keulen. „Topology Optimisation Techniques“. In Precision Metal Additive Manufacturing, 11–34. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429436543-2.
Der volle Inhalt der QuelleSchofield, Norman. „Topology and Convex Optimisation“. In Springer Texts in Business and Economics, 77–133. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-39818-6_3.
Der volle Inhalt der QuelleSchofield, Norman. „Topology and Convex Optimisation“. In Mathematical Methods in Economics and Social Choice, 89–158. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-55867-2_3.
Der volle Inhalt der QuelleRizwan, Syed Abdul Malik, Mohd Abdul Wahed, Mohammed Suleman und Mohd Ibrahim Ahmed. „Topology optimisation of aerospace bracket“. In Recent Advances in Material, Manufacturing, and Machine Learning, 276–83. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003450252-33.
Der volle Inhalt der QuelleBallo, Federico Maria, Massimiliano Gobbi, Giampiero Mastinu und Giorgio Previati. „Topology Optimisation of Continuum Structures“. In Optimal Lightweight Construction Principles, 201–14. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60835-4_11.
Der volle Inhalt der QuellePeratikou, Adamantini, und Mo Adda. „Optimisation of Extended Generalised Fat Tree Topologies“. In Communications in Computer and Information Science, 82–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14228-9_7.
Der volle Inhalt der QuelleGentile, Lorenzo, Elisa Morales, Martin Zaefferer, Edmondo Minisci, Domenico Quagliarella, Thomas Bartz-Beielstein und Renato Tognaccini. „High-Lift Devices Topology Robust Optimisation Using Machine Learning Assisted Optimisation“. In Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications, 297–313. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80542-5_18.
Der volle Inhalt der QuelleQuerin, O. M., G. P. Steven und Y. M. Xie. „Advances in Evolutionary Structural Optimisation: 1992-2000“. In Topology Optimization of Structures and Composite Continua, 227–36. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0910-2_16.
Der volle Inhalt der QuelleAvilasha, B. G., und D. S. Ramakrishna. „Numerical and experimental topology optimisation of crane hook“. In Recent Advances in Material, Manufacturing, and Machine Learning, 1529–38. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003370628-89.
Der volle Inhalt der QuelleMartens, Pascal, Maarten Mathot, Freek Bos und Jeroen Coenders. „Optimising 3D Printed Concrete Structures Using Topology Optimisation“. In High Tech Concrete: Where Technology and Engineering Meet, 301–9. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_37.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Optimisation Topologie"
Bergonti, Fabio, Gabriele Nava, Valentin Wüest, Antonello Paolino, Giuseppe L’Erario, Daniele Pucci und Dario Floreano. „Co-Design Optimisation of Morphing Topology and Control of Winged Drones“. In 2024 IEEE International Conference on Robotics and Automation (ICRA), 8679–85. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611506.
Der volle Inhalt der QuelleYang, Yang, Jinbing Wang, Hui Liu, Mingyang Luo, Li Wei und Zhaoqing Li. „Lightweight design of flexible suction cup connecting beams based on topology optimisation“. In 5th International Conference on Mechanical Engineering and Materials (ICMEM 2024), herausgegeben von Jinyang Xu und Gupta Manoj, 159. SPIE, 2025. https://doi.org/10.1117/12.3060546.
Der volle Inhalt der QuelleJiang, Shufeng, und Zhaoxin Qin. „Simulation study of 3D SVT machine table with topology optimisation by variable density method“. In International Conference on Optics, Electronics, and Communication Engineering, herausgegeben von Yang Yue, 239. SPIE, 2024. http://dx.doi.org/10.1117/12.3050082.
Der volle Inhalt der QuelleDamtsas, Efstathios, ThanhT Banh, Dongkyu Lee und Michael Herrmann. „Two-Way Connection between Grasshopper and Matlab for the First SIMP-Based Multi-Material Topology Optimisation Plugin for Grasshopper“. In eCAADe 2024: Data-Driven Intelligence, 375–82. eCAADe, 2024. http://dx.doi.org/10.52842/conf.ecaade.2024.2.375.
Der volle Inhalt der QuelleVincekovic, Luka, Alistair John, Ning Qin und Shahrokh Shahpar. „Exploring Topology Optimisation of High Pressure Turbine Blade Tips“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-16059.
Der volle Inhalt der QuelleDi´az-Cuevas, Germa´n L., und Roger F. Ngwompo. „Bond Graph Binary Encoding Method for Genetic Algorithms Applications“. In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41888.
Der volle Inhalt der QuelleRomdhanne, Bilel Ben, Mourad Boudia und Nicolas Bondoux. „Amadeus Migration Process a Simulation-Driven Process to Enhance the Migration to a Multi-Cloud Environment“. In 12th International Conference on Digital Image Processing and Vision. Academy & Industry Research Collaboration, 2023. http://dx.doi.org/10.5121/csit.2023.131308.
Der volle Inhalt der QuelleBarreau, Vincent, Enora Denimal und Loic Salles. „Topological Optimisation and 3d Printing of a Bladed Disc“. In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-78141.
Der volle Inhalt der QuelleUgemuge, Mosam, und Sreethul Das. „Topology Optimisation of Brake Caliper“. In Brake Colloquium & Exhibition - 38th Annual. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-01-1620.
Der volle Inhalt der QuelleMinier, Yves, und Donald Maclaren Silcock. „Electrical Protection From Design to Commissioning for Subsea Electrically Heat Traced Flowline Pipe in Pipe System, The Challenge of Inaccessible Subsea Electrical Assets.“ In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32294-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Optimisation Topologie"
Leidermark, Daniel, und Magnus Andersson, Hrsg. Reports in Applied Mechanics 2022. Linköping University Electronic Press, Februar 2024. http://dx.doi.org/10.3384/9789180754156.
Der volle Inhalt der QuelleEriksson, Robert, und Magnus Andersson. Reports in Applied Mechanics 2023. Herausgegeben von Daniel Leidermark. Linköping University Electronic Press, August 2024. http://dx.doi.org/10.3384/9789180755917.
Der volle Inhalt der Quelle