Zeitschriftenartikel zum Thema „Optoelectronic devices“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Optoelectronic devices" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Miroshnichenko, Anna S., Vladimir Neplokh, Ivan S. Mukhin, and Regina M. Islamova. "Silicone Materials for Flexible Optoelectronic Devices." Materials 15, no. 24 (December 7, 2022): 8731. http://dx.doi.org/10.3390/ma15248731.
Der volle Inhalt der QuelleKausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa, and Patrizia Bocchetta. "Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology." Journal of Composites Science 6, no. 12 (December 16, 2022): 393. http://dx.doi.org/10.3390/jcs6120393.
Der volle Inhalt der QuelleMatei, Andrei Teodor, Anita Ioana Visan, and Irina Negut. "Laser-Fabricated Micro/Nanostructures: Mechanisms, Fabrication Techniques, and Applications." Micromachines 16, no. 5 (May 13, 2025): 573. https://doi.org/10.3390/mi16050573.
Der volle Inhalt der QuelleSang, Xianhe, Yongfu Wang, Qinglin Wang, Liangrui Zou, Shunhao Ge, Yu Yao, Xueting Wang, Jianchao Fan, and Dandan Sang. "A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction." Molecules 28, no. 3 (January 30, 2023): 1334. http://dx.doi.org/10.3390/molecules28031334.
Der volle Inhalt der QuelleVazhdaev, Konstantin, Marat Urakseev, Azamat Allaberdin, and Kostantin Subkhankulov. "OPTOELECTRONIC DEVICES BASED ON DIFFRACTION GRATINGS FROM STANDING ELASTIC WAVES." Electrical and data processing facilities and systems 18, no. 3-4 (2022): 151–58. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-151-158.
Der volle Inhalt der QuelleAlles, M. A., S. M. Kovalev, and S. V. Sokolov. "Optoelectronic Defuzzification Devices." Физические основы приборостроения 1, no. 3 (September 15, 2012): 83–91. http://dx.doi.org/10.25210/jfop-1203-083091.
Der volle Inhalt der QuelleBhattacharya, Pallab, and Lily Y. Pang. "Semiconductor Optoelectronic Devices." Physics Today 47, no. 12 (December 1994): 64. http://dx.doi.org/10.1063/1.2808754.
Der volle Inhalt der QuelleOsten, W. "Advanced Optoelectronic Devices." Optics & Laser Technology 31, no. 8 (November 1999): 613–14. http://dx.doi.org/10.1016/s0030-3992(00)00008-6.
Der volle Inhalt der QuelleJerrard, H. G. "Picosecond optoelectronic devices." Optics & Laser Technology 18, no. 2 (April 1986): 105. http://dx.doi.org/10.1016/0030-3992(86)90049-6.
Der volle Inhalt der QuelleChapman, David. "Optoelectronic semiconductor devices." Microelectronics Journal 25, no. 8 (November 1994): 769. http://dx.doi.org/10.1016/0026-2692(94)90143-0.
Der volle Inhalt der QuelleDjuris˘Ić, A. B., and W. K. Chan. "Organic Optoelectronic Devices." HKIE Transactions 11, no. 2 (January 2004): 44–52. http://dx.doi.org/10.1080/1023697x.2004.10667955.
Der volle Inhalt der QuelleLugli, Paolo, Fabio Compagnone, Aldo Di Carlo, and Andrea Reale. "Simulation of Optoelectronic Devices." VLSI Design 13, no. 1-4 (January 1, 2001): 23–36. http://dx.doi.org/10.1155/2001/19585.
Der volle Inhalt der QuelleMILLER, D. A. B. "QUANTUM WELL OPTOELECTRONIC SWITCHING DEVICES." International Journal of High Speed Electronics and Systems 01, no. 01 (March 1990): 19–46. http://dx.doi.org/10.1142/s0129156490000034.
Der volle Inhalt der QuelleWu, Jieyun, Qing Li, Wen Wang, and Kaixin Chen. "Optoelectronic Properties and Structural Modification of Conjugated Polymers Based on Benzodithiophene Groups." Mini-Reviews in Organic Chemistry 16, no. 3 (January 25, 2019): 253–60. http://dx.doi.org/10.2174/1570193x15666180406144851.
Der volle Inhalt der QuelleBerini, Pierre. "Plasmonic optoelectronic devices and metasurfaces." EPJ Web of Conferences 309 (2024): 01003. http://dx.doi.org/10.1051/epjconf/202430901003.
Der volle Inhalt der QuelleNowsherwan, Ghazi Aman, Qasim Ali, Umar Farooq Ali, Muhammad Ahmad, Mohsin Khan, and Syed Sajjad Hussain. "Advances in Organic Materials for Next-Generation Optoelectronics: Potential and Challenges." Organics 5, no. 4 (November 11, 2024): 520–60. http://dx.doi.org/10.3390/org5040028.
Der volle Inhalt der QuelleMa, Qijie, Guanghui Ren, Arnan Mitchell, and Jian Zhen Ou. "Recent advances on hybrid integration of 2D materials on integrated optics platforms." Nanophotonics 9, no. 8 (April 17, 2020): 2191–214. http://dx.doi.org/10.1515/nanoph-2019-0565.
Der volle Inhalt der QuelleBasri, Nur Fadzilah, Afishah Alias, Megat Muhammad Ikhsan Megat Hasnan, Mohammad Syahmi Nordin, Fahrettin Sarcan, and Khairul Anuar Mohamad. "Comparison of Non-Linear Impedance AC Response of 10 and 20 Multiple Quantum Wells (MQWs) p-i-n Diode with DBR Towards Low Leakage Current Generation of Optoelectronic Device." Journal of Advanced Research in Applied Sciences and Engineering Technology 62, no. 3 (December 19, 2024): 178–88. https://doi.org/10.37934/araset.62.3.178188.
Der volle Inhalt der QuelleLi, Ziwei, Boyi Xu, Delang Liang, and Anlian Pan. "Polarization-Dependent Optical Properties and Optoelectronic Devices of 2D Materials." Research 2020 (August 29, 2020): 1–35. http://dx.doi.org/10.34133/2020/5464258.
Der volle Inhalt der QuelleWu, Zhiyong, Lu Zhu, and Zhengji Xu. "Editorial for the Special Issue on Micro/Nano-Structure Based Optoelectronics and Photonics Devices." Micromachines 14, no. 10 (September 29, 2023): 1867. http://dx.doi.org/10.3390/mi14101867.
Der volle Inhalt der QuelleLiu, Zhixiong, and Husam N. Alshareef. "MXenes for Optoelectronic Devices." Advanced Electronic Materials 7, no. 9 (July 8, 2021): 2100295. http://dx.doi.org/10.1002/aelm.202100295.
Der volle Inhalt der QuelleChuang, Shun Lien, Nasser Peyghambarian, and Stephan Koch. "Physics of Optoelectronic Devices." Physics Today 49, no. 7 (July 1996): 62. http://dx.doi.org/10.1063/1.2807693.
Der volle Inhalt der QuelleDemming, Anna, Mark Brongersma, and Dai Sik Kim. "Plasmonics in optoelectronic devices." Nanotechnology 23, no. 44 (October 18, 2012): 440201. http://dx.doi.org/10.1088/0957-4484/23/44/440201.
Der volle Inhalt der QuelleCai, Yuanjing, Anjun Qin, and Ben Zhong Tang. "Siloles in optoelectronic devices." Journal of Materials Chemistry C 5, no. 30 (2017): 7375–89. http://dx.doi.org/10.1039/c7tc02511d.
Der volle Inhalt der QuelleBouscher, Shlomi, Dmitry Panna, and Alex Hayat. "Semiconductor–superconductor optoelectronic devices." Journal of Optics 19, no. 10 (September 20, 2017): 103003. http://dx.doi.org/10.1088/2040-8986/aa8888.
Der volle Inhalt der QuelleBhattacharya, Pallab, and Zetian Mi. "Quantum-Dot Optoelectronic Devices." Proceedings of the IEEE 95, no. 9 (September 2007): 1723–40. http://dx.doi.org/10.1109/jproc.2007.900897.
Der volle Inhalt der QuelleGoldstein, L. "Optoelectronic devices by GSMBE." Journal of Crystal Growth 105, no. 1-4 (October 1990): 93–96. http://dx.doi.org/10.1016/0022-0248(90)90344-k.
Der volle Inhalt der QuelleLiang, Zhiqiang, Jun Sun, Yueyue Jiang, Lin Jiang, and Xiaodong Chen. "Plasmonic Enhanced Optoelectronic Devices." Plasmonics 9, no. 4 (February 14, 2014): 859–66. http://dx.doi.org/10.1007/s11468-014-9682-7.
Der volle Inhalt der QuelleStar, Alexander, Yu Lu, Keith Bradley, and George Grüner. "Nanotube Optoelectronic Memory Devices." Nano Letters 4, no. 9 (September 2004): 1587–91. http://dx.doi.org/10.1021/nl049337f.
Der volle Inhalt der QuelleHenini, M. "Physics of optoelectronic devices." Microelectronics Journal 28, no. 1 (January 1997): 101–2. http://dx.doi.org/10.1016/s0026-2692(97)87853-6.
Der volle Inhalt der QuelleHenini, Mohamed. "Optoelectronic materials and devices." Microelectronics Journal 25, no. 8 (November 1994): 607–8. http://dx.doi.org/10.1016/0026-2692(94)90126-0.
Der volle Inhalt der QuelleHo, P. K. "All-Polymer Optoelectronic Devices." Science 285, no. 5425 (July 9, 1999): 233–36. http://dx.doi.org/10.1126/science.285.5425.233.
Der volle Inhalt der QuelleTomas, R. "Physics of optoelectronic devices." Optics and Lasers in Engineering 26, no. 1 (January 1997): 72. http://dx.doi.org/10.1016/0143-8166(96)81156-0.
Der volle Inhalt der QuelleHövel, S., N. C. Gerhardt, M. R. Hofmann, F. Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, H. Wende, and W. Keune. "Spin-controlled optoelectronic devices." physica status solidi (c) 6, no. 2 (February 2009): 436–39. http://dx.doi.org/10.1002/pssc.200880357.
Der volle Inhalt der QuelleShan, Xuanyu, Chenyi Zhao, Ya Lin, Jilin Liu, Xiaohan Zhang, Ye Tao, Chunliang Wang, et al. "Optoelectronic synaptic device based on ZnO/HfOx heterojunction for high-performance neuromorphic vision system." Applied Physics Letters 121, no. 26 (December 26, 2022): 263501. http://dx.doi.org/10.1063/5.0129642.
Der volle Inhalt der QuelleZhuo, Linqing, Dongquan Li, Weidong Chen, Yu Zhang, Wang Zhang, Ziqi Lin, Huadan Zheng, et al. "High performance multifunction-in-one optoelectronic device by integrating graphene/MoS2 heterostructures on side-polished fiber." Nanophotonics 11, no. 6 (February 2, 2022): 1137–47. http://dx.doi.org/10.1515/nanoph-2021-0688.
Der volle Inhalt der QuelleGorham, D. "Amorphous and microcrystalline semiconductor devices: Optoelectronic devices." Microelectronics Journal 24, no. 7 (November 1993): 733. http://dx.doi.org/10.1016/0026-2692(93)90016-8.
Der volle Inhalt der QuelleSakurai, Makoto, Ke Wei Liu, Romain Ceolato, and Masakazu Aono. "Optical Properties of ZnO Nanowires Decorated with Au Nanoparticles." Key Engineering Materials 547 (April 2013): 7–10. http://dx.doi.org/10.4028/www.scientific.net/kem.547.7.
Der volle Inhalt der QuelleTang, Hongyu, and Giulia Tagliabue. "Tunable photoconductive devices based on graphene/WSe2 heterostructures." EPJ Web of Conferences 266 (2022): 09010. http://dx.doi.org/10.1051/epjconf/202226609010.
Der volle Inhalt der QuelleXu, Jiyuan, Zailan Zhang, Wei Zhang, and Zhesheng Chen. "Recent Progress of Self-Powered Optoelectronic Devices Based on 2D Materials." Processes 12, no. 8 (August 16, 2024): 1728. http://dx.doi.org/10.3390/pr12081728.
Der volle Inhalt der Quelleابراهيم السنوسي نصر و احمد ابوسيف عبد الرحمن. "Interactive Learning Material for Optoelectronic Devices using MATLAB-based GUI." Journal of Pure & Applied Sciences 19, no. 2 (November 18, 2020): 141–47. http://dx.doi.org/10.51984/jopas.v19i2.878.
Der volle Inhalt der QuelleParkhomenko, Hryhorii P., Erik O. Shalenov, Zarina Umatova, Karlygash N. Dzhumagulova, and Askhat N. Jumabekov. "Fabrication of Flexible Quasi-Interdigitated Back-Contact Perovskite Solar Cells." Energies 15, no. 9 (April 21, 2022): 3056. http://dx.doi.org/10.3390/en15093056.
Der volle Inhalt der QuelleKumar, Swarup, Usha Akter, and Sree Biddut Kumar. "Compound Materials in Optoelectronics: A Review of Their Prospects and Applications." European Journal of Theoretical and Applied Sciences 3, no. 2 (April 2, 2025): 371–82. https://doi.org/10.59324/ejtas.2025.3(2).32.
Der volle Inhalt der QuelleSwarup, Kumar, Akter Usha, and Biddut Kumar Sree. "Compound Materials in Optoelectronics: A Review of Their Prospects and Applications." European Journal of Theoretical and Applied Sciences 3, no. 2 (April 2, 2025): 371–82. https://doi.org/10.59324/ejtas.2025.3(2).32.
Der volle Inhalt der QuelleOuyang, Yi, Chaoyi Zhang, Jun Wang, Zheng Guo, Zegao Wang, and Mingdong Dong. "Gate‐Tunable Dual‐Mode Optoelectronic Device for Self‐Powered Photodetector and Optoelectronic Synapse." Advanced Science, March 12, 2025. https://doi.org/10.1002/advs.202416259.
Der volle Inhalt der QuelleAhmad, Waqas, Ye Wang, Jamal Kazmi, Umer Younis, Nabisab Mujawar Mubarak, Shrouq H. Aleithan, Ali Imran Channa, Wen Lei, and Zhiming Wang. "Janus 2D Transition Metal Dichalcogenides: Research Progress, Optical Mechanism and Future Prospects for Optoelectronic Devices." Laser & Photonics Reviews, November 30, 2024. https://doi.org/10.1002/lpor.202400341.
Der volle Inhalt der QuelleDong, He, Chenxin Ran, Weiyin Gao, Mingjie Li, Yingdong Xia, and Wei Huang. "Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects." eLight 3, no. 1 (January 4, 2023). http://dx.doi.org/10.1186/s43593-022-00033-z.
Der volle Inhalt der QuelleLee, SangMyeong, Hee Jung Kim, Young Ju Kim, Geon Woo Yoon, Oh Yeong Gong, Won Bin Kim, and Hyun Suk Jung. "Relative Permittivity and Optoelectronic Performances of Halide Perovskites: Study of Combined First‐Principles Simulation and Combinatorial Synthesis." Advanced Photonics Research, September 4, 2024. http://dx.doi.org/10.1002/adpr.202400039.
Der volle Inhalt der QuelleLiu, Jingjing, Junle Qu, Thomas Kirchartz, and Jun Song. "Optoelectronic devices based on the integration of halide perovskites with silicon-based materials." Journal of Materials Chemistry A, 2021. http://dx.doi.org/10.1039/d1ta04527j.
Der volle Inhalt der QuelleSong, Haizeng, Shuai Chen, Xueqian Sun, Yichun Cui, Tanju Yildirim, Jian Kang, Shunshun Yang, Fan Yang, Yuerui Lu, and Linglong Zhang. "Enhancing 2D Photonics and Optoelectronics with Artificial Microstructures." Advanced Science, June 21, 2024. http://dx.doi.org/10.1002/advs.202403176.
Der volle Inhalt der Quelle