Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Patial Frequency Domain Imaging“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Patial Frequency Domain Imaging" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Patial Frequency Domain Imaging"
Lin, Jingyu, Yebin Liu, Jinli Suo und Qionghai Dai. „Frequency-Domain Transient Imaging“. IEEE Transactions on Pattern Analysis and Machine Intelligence 39, Nr. 5 (01.05.2017): 937–50. http://dx.doi.org/10.1109/tpami.2016.2560814.
Der volle Inhalt der QuelleYang Hong, 杨虹, 黄远辉 Huang Yuanhui, 苗少峰 Miao Shaofeng, 宫睿 Gong Rui, 邵晓鹏 Shao Xiaopeng und 毕祥丽 Bi Xiangli. „Frequency-domain photoacoustic imaging system“. Infrared and Laser Engineering 45, Nr. 4 (2016): 0424001. http://dx.doi.org/10.3788/irla201645.0424001.
Der volle Inhalt der QuelleJiang, Shan, Meiling Guan, Jiamin Wu, Guocheng Fang, Xinzhu Xu, Dayong Jin, Zhen Liu et al. „Frequency-domain diagonal extension imaging“. Advanced Photonics 2, Nr. 03 (02.06.2020): 1. http://dx.doi.org/10.1117/1.ap.2.3.036005.
Der volle Inhalt der QuelleZander, Dani S. „Volumetric Optical Frequency Domain Imaging“. Chest 143, Nr. 1 (Januar 2013): 10–12. http://dx.doi.org/10.1378/chest.12-1864.
Der volle Inhalt der QuelleHaworth, Kevin J., Kenneth B. Bader, Kyle T. Rich, Christy K. Holland und T. Douglas Mast. „Frequency-domain passive cavitation imaging“. Journal of the Acoustical Society of America 141, Nr. 5 (Mai 2017): 3458. http://dx.doi.org/10.1121/1.4987172.
Der volle Inhalt der QuelleZhang, Guang-Ming, Derek R. Braden, David M. Harvey und David R. Burton. „Acoustic time-frequency domain imaging“. Journal of the Acoustical Society of America 128, Nr. 5 (November 2010): EL323—EL328. http://dx.doi.org/10.1121/1.3505760.
Der volle Inhalt der QuelleKonecky, Soren D. „Imaging scattering orientation with spatial frequency domain imaging“. Journal of Biomedical Optics 16, Nr. 12 (01.12.2011): 126001. http://dx.doi.org/10.1117/1.3657823.
Der volle Inhalt der QuelleYun, S., G. Tearney, Johannes de Boer, N. Iftimia und B. Bouma. „High-speed optical frequency-domain imaging“. Optics Express 11, Nr. 22 (03.11.2003): 2953. http://dx.doi.org/10.1364/oe.11.002953.
Der volle Inhalt der QuelleHaworth, Kevin J., Kenneth B. Bader, Kyle T. Rich, Christy K. Holland und T. Douglas Mast. „Quantitative Frequency-Domain Passive Cavitation Imaging“. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 64, Nr. 1 (Januar 2017): 177–91. http://dx.doi.org/10.1109/tuffc.2016.2620492.
Der volle Inhalt der QuelleVakoc, B. J., S. H. Yun, J. F. de Boer, G. J. Tearney und B. E. Bouma. „Phase-resolved optical frequency domain imaging“. Optics Express 13, Nr. 14 (2005): 5483. http://dx.doi.org/10.1364/opex.13.005483.
Der volle Inhalt der QuelleDissertationen zum Thema "Patial Frequency Domain Imaging"
Ségaud, Silvère. „Multispectral optical imaging in real-time for surgery“. Electronic Thesis or Diss., Strasbourg, 2022. http://www.theses.fr/2022STRAD055.
Der volle Inhalt der QuelleThe deployment of technology in operating rooms dramatically accelerated over the last decades. More precisely, the surgeons’ ability to distinguish healthy from diseased tissues is still mostly based on their own subjective perception. As tissue status assessment is of upmost importance in oncologic surgery, both for tumor resection and reconstruction procedures, the ability to assess the tissues intraoperatively and in real-time over a large field is crucial for surgical act guidance. The lack of tools for biological intraoperative tissue status assessment has been the main source of motivation for this thesis work. A clinically-compatible imaging platform has been developed for oxygenation and fluorescence imaging in real-time. The capability of the platform to detect and quantify ischemia has been demonstrated through preclinical trials, by comparison with standard of care methods. Furthermore, the multimodal nature of the developed imaging device has been exploited by combining endogenous imaging of optical properties with exogenous fluorescence imaging, in the context of oncologic surgery. A fluorescence quantification technique was validated in preclinical trials with colorectal and pancreatic cancer models, highlighting the limitations of conventional fluorescence imaging
Lee, Edward Chin Wang. „Optical frequency domain imaging of human retina and choroid“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38556.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 81-87).
Optical coherence tomography (OCT) has emerged as a practical noninvasive technology for imaging the microstructure of the human eye in vivo. Using optical interferometry to spatially-resolve backreflections from within tissue, this high-resolution technique provides cross-sectional images of the anterior and posterior eye segments that had previously only been possible with histology. Current commercially-available OCT systems suffer limitations in speed and sensitivity, preventing them from effective screening of the retina and having a larger impact on the clinical environment. While other technological advances have addressed this problem, they are inadequate for imaging the choroid, which can be useful for evaluating choroidal disorders as well as early stages of retinal diseases. The objective of this thesis was to develop a new ophthalmic imaging method, termed optical frequency domain imaging (OFDI), to overcome these limitations. Preliminary imaging of the posterior segment of human eyes in vivo was performed to evaluate the utility of this instrument for comprehensive ophthalmic examination.
(cont.) The 1050-nm OFDI system developed for this thesis comprised a novel wavelength-swept laser that delivered 2.7 mW of average power at a sweep rate of 18.8 kHz, representing a two-order-of-magnitude improvement in speed over previously-demonstrated lasers in the 1050-nm range and below. The system, with an optical exposure level of 550 gW, achieved resolution of 10 gm in tissue and sensitivity of >92 dB over a depth range of 2.4 mm. Two healthy volunteers were imaged with the OFDI system, with 200,000 A-lines over 10.6 seconds in each imaging session. In comparison to results from a state-of-the-art spectral-domain OCT system, the OFDI system provided deeper penetration into the choroid. This thesis demonstrates OFDI's capability for comprehensive imaging of the human retina, optic disc, and choroid in vivo. The deep penetration power of the system enabled the first simultaneous visualization of retinal and choroidal vasculature without the exogenous dyes required by angiography. The combined capability for imaging microstructure and vasculature using a single instrument may be a significant factor influencing clinical acceptance of ophthalmic OFDI technology.
by Edward Chin Wang Lee.
S.M.
Heffer, Erica Leigh. „Frequency-domain optical mammography for detection and oximetry of breast tumors /“. Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.
Den vollen Inhalt der Quelle findenAdviser: Sergio Fantini. Submitted to the Dept. of Electrical Engineering. Includes bibliographical references (leaves 201-202). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Van, Vorst Daryl. „Cross-hole GPR imaging : traveltime and frequency-domain full-waveform inversion“. Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/51664.
Der volle Inhalt der QuelleApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Yong, Kai Yaw. „Frequency domain optical techniques for imaging and spectroscopy of scattering media“. Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404049.
Der volle Inhalt der QuelleKujala, Naresh Gandhi Yu Ping. „Frequency domain fluorescent molecular tomography and molecular probes for small animal imaging“. Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/7021.
Der volle Inhalt der QuellePetrack, Alec M. „Single-Pixel Camera Based Spatial Frequency Domain Imaging for Non-Contact Tissue Characterization“. Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1596066982589817.
Der volle Inhalt der QuellePoon, Chien Sing. „Early Assessment of Burn Severity in Human Tissue with Multi-Wavelength Spatial Frequency Domain Imaging“. Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1484582176416423.
Der volle Inhalt der QuelleRasmussen, John C. „Development of a radiative transport based, fluorescence-enhanced, frequency-domain small animal imaging system“. Thesis, [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1067.
Der volle Inhalt der QuelleDavies, Christopher W. „Quantification of Optical Parameters Using Frequency Domain Functional Near-Infrared Spectroscopy (FD-fNIRS)“. Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1559369168541587.
Der volle Inhalt der QuelleBücher zum Thema "Patial Frequency Domain Imaging"
Time-Frequency Transforms for Radar Imaging and Signal Analysis. Artech House Publishers, 2002.
Den vollen Inhalt der Quelle findenMoukadem, Ali, Djaffar Ould Abdeslam und Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Den vollen Inhalt der Quelle findenMoukadem, Ali, Djaffar Ould Abdeslam und Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Den vollen Inhalt der Quelle findenMoukadem, Ali, Djaffar Ould Abdeslam und Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Den vollen Inhalt der Quelle findenMoukadem, Ali, Djaffar Ould Abdeslam und Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals: The Stockwell Transform Applied on Bio-signals and Electric Signals. Wiley-Interscience, 2014.
Den vollen Inhalt der Quelle findenMoukadem, Ali, Djaffar Ould Abdeslam und Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Patial Frequency Domain Imaging"
Bouma, Brett E., Guillermo J. Tearney, Benjamin Vakoc und Seok Hyun Yun. „Optical Frequency Domain Imaging“. In Optical Coherence Tomography, 225–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_8.
Der volle Inhalt der QuelleBouma, B. E., G. J. Tearney, B. J. Vakoc und S. H. Yun. „Optical Frequency Domain Imaging“. In Optical Coherence Tomography, 209–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77550-8_7.
Der volle Inhalt der QuelleAllam, Mahmoud E., und James F. Greenleaf. „Two-Dimensional Frequency Domain Phase Aberration Correction“. In Acoustical Imaging, 159–64. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4419-8772-3_25.
Der volle Inhalt der QuelleSubramanian, Sankaran, James B. Mitchell und Murali C. Krishna. „Time-Domain Radio Frequency EPR Imaging“. In In Vivo EPR (ESR), 153–97. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0061-2_7.
Der volle Inhalt der QuelleBossuyt, A., R. Luypaert, J. Van Craen, F. Deconinck und A. B. Brill. „Adaptive Frequency-Domain Filtering Of Dynamic Scintigraphies“. In Information Processing in Medical Imaging, 207–15. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4261-5_15.
Der volle Inhalt der QuelleMcKeon, James C. P. „Frequency Domain Filtering for Enhanced SAM Inspection of Microelectronic Components“. In Acoustical Imaging, 353–61. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-8606-1_45.
Der volle Inhalt der QuelleMaier, J., S. Walker und E. Gratton. „Frequency-Domain Optical Spectroscopy and Imaging of Tissues“. In Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, 121–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1750-7_11.
Der volle Inhalt der QuelleShonat, Ross D., und Amanda C. Kight. „Frequency Domain Imaging of Oxygen Tension in the Mouse Retina“. In Advances in Experimental Medicine and Biology, 243–47. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0205-0_40.
Der volle Inhalt der QuelleVerveer, Peter J., Anthony Squire und Philippe I. H. Bastiaens. „Frequency-Domain Fluorescence Lifetime Imaging Microscopy: A Window on the Biochemical Landscape of the Cell“. In Methods in Cellular Imaging, 273–94. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_16.
Der volle Inhalt der QuelleDong, Chen-Yuan, Christof Buehler, Peter T. C. So, Todd French und Enrico Gratton. „Biological Applications of Time-Resolved, Pump-Probe Fluorescence Microscopy and Spectroscopy in the Frequency Domain“. In Methods in Cellular Imaging, 324–40. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Patial Frequency Domain Imaging"
Lee, Zhenghong, Pedro J. Diaz und Errol M. Bellon. „Frequency domain clipping for volume rendering“. In Medical Imaging 1996, herausgegeben von Yongmin Kim. SPIE, 1996. http://dx.doi.org/10.1117/12.238477.
Der volle Inhalt der QuelleGratton, E. „Techniques C: frequency domain“. In Medical Optical Tomography: Functional Imaging and Monitoring, herausgegeben von Gerhard J. Mueller. SPIE, 1993. http://dx.doi.org/10.1117/12.2283773.
Der volle Inhalt der QuellePanigrahi, Swapnesh, und Sylvain Gioux. „Spatial frequency domain imaging: frequency selection (Conference Presentation)“. In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVI, herausgegeben von Tuan Vo-Dinh, Anita Mahadevan-Jansen und Warren S. Grundfest. SPIE, 2018. http://dx.doi.org/10.1117/12.2290220.
Der volle Inhalt der QuelleFischer, Mani, und Doron Shaked. „Frequency domain design of cluster dot screens“. In Electronic Imaging 2006, herausgegeben von Reiner Eschbach und Gabriel G. Marcu. SPIE, 2006. http://dx.doi.org/10.1117/12.641903.
Der volle Inhalt der QuelleMantulin, William W., Todd E. French und Enrico Gratton. „Optical imaging in the frequency domain“. In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, herausgegeben von David M. Harris, Carl M. Penney und Abraham Katzir. SPIE, 1993. http://dx.doi.org/10.1117/12.147495.
Der volle Inhalt der QuelleChue-Sang, Joseph, Aaron M. Goldfain, Jeeseong Hwang und Thomas A. Germer. „Spatial frequency domain Mueller matrix imaging“. In Polarized light and Optical Angular Momentum for biomedical diagnostics, herausgegeben von Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson und Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2576350.
Der volle Inhalt der QuelleSandhu, Gursharan Yash Singh, Cuiping Li, Olivier Roy, Erik West, Katelyn Montgomery, Michael Boone und Neb Duric. „Frequency-domain ultrasound waveform tomography breast attenuation imaging“. In SPIE Medical Imaging, herausgegeben von Neb Duric und Brecht Heyde. SPIE, 2016. http://dx.doi.org/10.1117/12.2218374.
Der volle Inhalt der QuelleSandhu, Gursharan Yash, Erik West, Cuiping Li, Olivier Roy und Neb Duric. „3D frequency-domain ultrasound waveform tomography breast imaging“. In SPIE Medical Imaging, herausgegeben von Neb Duric und Brecht Heyde. SPIE, 2017. http://dx.doi.org/10.1117/12.2254399.
Der volle Inhalt der QuelleEl-Sharkawy, Yasser H., und Bassam Abd-Elwahab. „Nonintrusive noncontacting frequency-domain photothermal radiometry of caries“. In SPIE Medical Imaging. SPIE, 2010. http://dx.doi.org/10.1117/12.843769.
Der volle Inhalt der QuelledeJong, Max, Guy Perkins, Hamid Dehghani und Adam Eggebrecht. „Multifrequency frequency domain diffuse optical tomography“. In Diffuse Optical Spectroscopy and Imaging VIII, herausgegeben von Davide Contini, Yoko Hoshi und Thomas D. O'Sullivan. SPIE, 2021. http://dx.doi.org/10.1117/12.2615390.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Patial Frequency Domain Imaging"
Khavandi, Ali. Treatment of a Bifurcation Lesion Using a Two-stent ‘Reverse’ T and Small Protrusion Technique Via a Glidesheath Slender® and Optimisation using 3D Optical Frequency Domain Imaging. Radcliffe Cardiology, November 2017. http://dx.doi.org/10.15420/rc.2017.m018.
Der volle Inhalt der Quelle