Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „PCM cooling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "PCM cooling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "PCM cooling"
Wang, Wanteng, Nan Li, Jinhui Zhang, Caihong Zhang und Liang Zhang. „Thermal Management Analysis of Proton Exchange Membrane Fuel Cell Filled with Phase Change Material in Cooling Channel“. International Journal of Energy Research 2023 (30.03.2023): 1–12. http://dx.doi.org/10.1155/2023/9077046.
Der volle Inhalt der QuelleM, Ravikumar, und Srinivasan P.S.S. „PCM FOR BUILDING COOLING“. International Journal on Design and Manufacturing Technologies 3, Nr. 1 (2009): 71–76. http://dx.doi.org/10.18000/ijodam.70049.
Der volle Inhalt der QuellePalappan, Rajendran, Avadaiappa Pasupathy, Lazarus Asirvatham, Tharayil Trijo und Somchai Wongwises. „Heating and cooling capacity of phase change material coupled with screen mesh wick heat pipe for thermal energy storage applications“. Thermal Science 24, Nr. 2 Part A (2020): 723–34. http://dx.doi.org/10.2298/tsci180207237p.
Der volle Inhalt der QuelleTang, Zhi Jun, Qun Zhi Zhu, Jia Wei Lu und Ming Yan Wu. „Study on Various Types of Cooling Techniques Applied to Power Battery Thermal Management Systems“. Advanced Materials Research 608-609 (Dezember 2012): 1571–76. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.1571.
Der volle Inhalt der QuelleKiwan, Suhil, Hisham Ahmad, Ammar Alkhalidi, Wahib O. Wahib und Wael Al-Kouz. „Photovoltaic Cooling Utilizing Phase Change Materials“. E3S Web of Conferences 160 (2020): 02004. http://dx.doi.org/10.1051/e3sconf/202016002004.
Der volle Inhalt der QuelleSarafraz, M., Mohammad Safaei, Arturo Leon, Iskander Tlili, Tawfeeq Alkanhal, Zhe Tian, Marjan Goodarzi und M. Arjomandi. „Experimental Investigation on Thermal Performance of a PV/T-PCM (Photovoltaic/Thermal) System Cooling with a PCM and Nanofluid“. Energies 12, Nr. 13 (04.07.2019): 2572. http://dx.doi.org/10.3390/en12132572.
Der volle Inhalt der QuelleGrimonia, E., M. R. C. Andhika, M. F. N. Aulady, R. V. C. Rubi und N. L. Hamidah. „Thermal Management System Using Phase Change Material for Lithium-ion Battery“. Journal of Physics: Conference Series 2117, Nr. 1 (01.11.2021): 012005. http://dx.doi.org/10.1088/1742-6596/2117/1/012005.
Der volle Inhalt der QuelleCasenove, Eric, Loic Pujol, Alexis Vossier, Arnaud Perona, Vincent Goetz und Alain Dollet. „Assessment of a Phase Change Material (PCM) System for Moderating Temperature Rise of Solar Cells under Concentrated Sunlight“. Advances in Science and Technology 74 (Oktober 2010): 205–10. http://dx.doi.org/10.4028/www.scientific.net/ast.74.205.
Der volle Inhalt der QuelleLv, Shan, und Zhong Zhu Qiu. „Super-Cooling Suppression of Microencapsulated PCM“. Advanced Materials Research 1070-1072 (Dezember 2014): 422–26. http://dx.doi.org/10.4028/www.scientific.net/amr.1070-1072.422.
Der volle Inhalt der QuelleStamatiadou, Marianna E., Dimitrios I. Katsourinis und Maria A. Founti. „Computational assessment of a full-scale Mediterranean building incorporating wallboards with phase change materials“. Indoor and Built Environment 26, Nr. 10 (04.05.2016): 1429–43. http://dx.doi.org/10.1177/1420326x16645384.
Der volle Inhalt der QuelleDissertationen zum Thema "PCM cooling"
Bellander, Rickard. „Testing large samples of PCM in water calorimeter and PCM used in room applications by night-air cooling“. Licentiate thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-495.
Der volle Inhalt der QuelleGravoille, Pauline. „CASE STUDY OF ACTIVE FREE COOLING WITH THERMAL ENERGY STORAGE TECHNOLOGY“. Thesis, KTH, Kraft- och värmeteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-77778.
Der volle Inhalt der QuelleBest Master Thesis Award, granted by French Academic Institute
Cold Thermal Energy Storage
Al, Rashdi Nayif. „Effect of PCM in improving the thermal cooling comfort in buildings ceiling“. Thesis, Al Rashdi, Nayif (2019) Effect of PCM in improving the thermal cooling comfort in buildings ceiling. Honours thesis, Murdoch University, 2019. https://researchrepository.murdoch.edu.au/id/eprint/52470/.
Der volle Inhalt der QuelleHed, Göran. „Service life estimations in the design of a PCM based night cooling system“. Doctoral thesis, KTH, Civil and Architectural Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-449.
Der volle Inhalt der QuelleThe use of Phase Change Material, PCM, to change the thermal inertia of lightweight buildings is investigated in the CRAFT project C-TIDE. It is a joint project with Italian and Swedish partners, representing both industry and research. PCMs are materials where the phase change enthalpy can be used for thermal storage. The Swedish application is a night ventilation system where cold night air is used to solidify the PCM. The PCM is melted in the day with warm indoor air and thereby the indoor air is cooled. The system is intended for light weight buildings with an overproduction of heat during daytime. In the thesis, the results of experiments and numerical simulations of the application are presented. The theoretical background in order design the heat exchanger and applying the installation in thermal simulation software is presented. An extensive program is set up, in order to develop test methods and carry tests to evaluate the performance over time of the PCM. Testing procedures are set up according to ISO standards concerning service life testing. The tests are focused on the change over time of the Thermal Storage Capacity (TSC) in different temperature spans. Measurements are carried out on large samples with a water bath calorimeter. The service life estimation of a material is based on the performance of one or more critical properties over time. When the performances of these properties are below the performance requirements, the material has reached its service life. The critical properties of the PCM are evaluated by simulation of the application. The performance requirements of the material are set up according to general requirements of PCM and requirements according to building legislation. The critical properties of a PCM are the transition temperature, the melting temperature range and the TSC in the operative temperature interval. The critical property of the application is its energy efficiency.
The results of the study show that the night cooling system will lower the indoor air temperature during daytime. It also shows that the tested PCM does not have a clear phase change, but an increased specific heat in the operative temperature interval. Increasing the amount of material, used in the application, can compensate this. Finally, the tested PCM is thermally stable and the service life of the product is within the range of the design lives of the building services. It is essential to for all designers to know the performance over time of the properties of PCMs. Therefore it is desirable that standardized testing methods of PCM are established and standardized classification systems of PCMs are developed.
Navarro, Farré Lidia. „Thermal energy storage in buildings through phase change materials (PCM) incorporation for heating and cooling purposes“. Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/398840.
Der volle Inhalt der QuelleLa reducción del consumo energético de calefacción y refrigeración de los edificios es un reto para lograr los objetivos marcados por el Horizonte 2020. Nuevas aplicaciones de almacenamiento de energía térmica en edificios se muestran prometedoras para reducir este elevado consumo energético. Uno de los objetivos de esta tesis doctoral es revisar aplicaciones pasivas y activas de almacenamiento de energía que se encuentran en la literatura, especialmente aquellas con materiales de cambio de fase (PCM). En aplicaciones pasivas los requerimientos de confort y las condiciones climáticas son los principales parámetros que se han tenido en cuenta hasta ahora. Se estudia la influencia de cargas internas en aplicaciones pasivas de PCM. También, se presenta un sistema innovador que actúa como una unidad de almacenamiento térmico y como calefacción y refrigeración. El rendimiento térmico de este sistema se testea bajo condiciones reales y evalúa su potencial de reducción del consumo energético.
Reducing the energy consumption of heating and cooling systems of buildings is a key challenge to achieve the targets set for the Horizon 2020. New applications of thermal energy storage in buildings are promising to reduce the high energy consumption. One of the objectives of this PhD is to review passive and active applications of thermal energy storage in buildings found in the literature, especially those that use phase change materials (PCM). In passive applications comfort requirements and climatic conditions are the main parameters that have been considered so far. For this study, the influence of internal loads has been taken into account in passive PCM applications. Moreover, an innovative system which acts as a storage unit and a heating and cooling supply is presented. The thermal performance of this system is studied and the potential in reducing the energy consumption of heating and cooling is evaluated.
Li, Y. „Thermal performance analysis of a PCM combined solar chimney system for natural ventilation and heating/cooling“. Thesis, Coventry University, 2013. http://curve.coventry.ac.uk/open/items/0bca9412-8b49-4d3c-84e5-453e315d4c6b/1.
Der volle Inhalt der QuelleKumirai, Tichaona. „Development of a design tool for PCM based free comfort cooling system in office buildings in South Africa“. Diss., University of Pretoria, 2009. http://hdl.handle.net/2263/67754.
Der volle Inhalt der QuelleDissertation (MSc)--University of Pretoria, 2017.
Mechanical and Aeronautical Engineering
MSc
Unrestricted
Vitali, Margherita. „Phase change materials for building insulation: application to an active cooling ceiling at the Energy Efficiency Center“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Den vollen Inhalt der Quelle findenJaber, Samar [Verfasser], Salman [Akademischer Betreuer] Ajib, Peter [Akademischer Betreuer] Kurtz und W. [Akademischer Betreuer] Streicher. „Low Energy Building with Novel Cooling Unit Using PCM / Samar Jaber. Gutachter: Peter Kurtz ; W. Streicher. Betreuer: Salman Ajib“. Ilmenau : Universitätsbibliothek Ilmenau, 2012. http://d-nb.info/1020831014/34.
Der volle Inhalt der QuelleMårtensson, Benny, und Tobias Karlsson. „Cooling integrated solar panels using Phase Changing Materials“. Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16780.
Der volle Inhalt der QuelleI denna exjobbsrapport så har ett antal olika kylningssystem till PV-paneler setts igenom genom en mindre litteraturstudie. Därefter byggdes en kylningsmodul för en BIPV utifrån den kunskapen som samlats in. Kylningsmodulen använde sig utav ett PCM material som var uppdelat mellan 12 påsar som placerades i ett 3x4 mönster som fästs på baksidan av en aluminiumplåt som i sin tur placerades på baksidan utav PV-panelen. Denna testades först i ett pilottest och sedan utomhus på paneler som isoleras baktill för att simulera BIPV-paneler. Temperaturdata samlades in från panelens baksida, med och utan kylnings modul, som sedan jämfördes med varandra samt omgivningens temperatur. Slutsatsen är att PCM kyler panelen under liknande väderförhållanden där ute temperaturen och molnigheten var ungefär densamma, men att PCM behöver optimeras mer i form av användningen av materialet, mängden av material, och hur det sätts upp som kylning på PV-paneler. En ekonomisk kalkyl genomfördes som visar att det inte är ekonomiskt gångbart eftersom det tar 14 för PV-panelen med kylning att betala av sig själv medan det tar 13 år för PV-panelen utan kylning att göra det. Dessa resultat diskuteras sedan i jämförelse med andra system och tidigare arbeten som gjorts inom området.
Bücher zum Thema "PCM cooling"
P, Satheeshkumar. PCM based Free Cooling for an Passive Architecture. Karur, India: ASDF International, 2017.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Application of Russian thermo-electric devices (TEDS) for the U.S. microgravity program protein crystal growth (PCG) project: Final report, for contract NAS8-38609 ... [Washington, DC: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Application of Russian thermo-electric devices (TEDS) for the U.S. microgravity program protein crystal growth (PCG) project: Final report, for contract NAS8-38609 ... [Washington, DC: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "PCM cooling"
Duraković, Benjamin. „Passive Solar Heating/Cooling Strategies“. In PCM-Based Building Envelope Systems, 39–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38335-0_3.
Der volle Inhalt der QuelleQiu, Zhongzhu, Peng Li, Zhangyuan Wang, Han Zhao und Xudong Zhao. „PCM and PCM Slurries and Their Application in Solar Systems“. In Advanced Energy Efficiency Technologies for Solar Heating, Cooling and Power Generation, 101–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17283-1_4.
Der volle Inhalt der QuelleKolokotroni, Maria, und Thiago Santos. „Ventilative Cooling in Combination with Passive Cooling: Thermal Masses and Phase-Change Materials (PCM)“. In Innovations in Ventilative Cooling, 141–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72385-9_7.
Der volle Inhalt der QuelleSahu, Pragati Priyadarshini, Abhilas Swain und Radha Kanta Sarangi. „Role of PCM in Solar Photovoltaic Cooling: An Overview“. In Lecture Notes in Mechanical Engineering, 245–59. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7831-1_23.
Der volle Inhalt der QuelleDixit, Krishna Kant, und Indresh Yadav. „Efficiency Improvement of PV Panel Using PCM Cooling Technique“. In Studies in Infrastructure and Control, 159–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4663-8_15.
Der volle Inhalt der QuelleSaxena, Rajat, Dibakar Rakshit und S. C. Kaushik. „Review on PCM Application for Cooling Load Reduction in Indian Buildings“. In Solar Energy, 247–75. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0675-8_13.
Der volle Inhalt der QuelleBria, Abir, Benyounes Raillani, Mourad Salhi, Dounia Chaatouf, Samir Amraqui und Ahmed Mezrhab. „Numerical Investigation of Phase Change Material (PCM) Cooling in Photovoltaic Technology“. In Digital Technologies and Applications, 609–20. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-02447-4_63.
Der volle Inhalt der QuelleArshad, Adeel, Pouyan Talebizadehsardari, Muhammad Anser Bashir, Muhammad Ikhlaq, Mark Jabbal, Kuo Huang und Yuying Yan. „Transient Simulation of Finned Heat Sinks Embedded with PCM for Electronics Cooling“. In Advances in Heat Transfer and Thermal Engineering, 527–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_91.
Der volle Inhalt der QuelleGharbi, Salma, Souad Harmand und Sadok Ben Jabrallah. „Parametric Study on Thermal Performance of PCM Heat Sink Used for Electronic Cooling“. In Exergy for A Better Environment and Improved Sustainability 1, 243–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62572-0_17.
Der volle Inhalt der QuelleBarzin, Reza, John J. J. Chen, Brent R. Young und Mohammed Farid. „Application of PCM Energy Storage in Combination with Night Ventilation for Space Cooling“. In Thermal Energy Storage with Phase Change Materials, 259–76. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367567699-18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "PCM cooling"
Emam, Mohamed, Mahmoud Ahmed und Shinichi Ookawara. „Cooling of Concentrated Photovoltaic System Using Various Configurations of Phase-Change Material Heat Sink“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67111.
Der volle Inhalt der QuelleColla, Laura, Laura Fedele, Simone Mancin, Sergio Bobbo, Davide Ercole und Oronzio Manca. „Nano-PCMs for Electronics Cooling Applications“. In ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6613.
Der volle Inhalt der QuelleSheikh, Yahya, Mohamed Gadalla, Muhammed Umair, Elmehaisi Mehaisi und Ahmed Azmeer. „Effect of Adding Graphene Nano-Platelets With Surfactants on Bio-Based PCM Characteristics and its Cooling Performance“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24373.
Der volle Inhalt der QuelleOmojaro, Peter, Cornelia Breitkopf und Simon Omojaro. „Passive Cooling With Phase Change Material Energy Storage“. In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18204.
Der volle Inhalt der QuelleHan, Linsen, Guangbo Gao, li cui, yizhuo zhang und Hongwei Geng. „PCM cooling system of high-power lasers“. In High-Power, High-Energy, and High-Intensity Laser Technology, herausgegeben von Thomas J. Butcher und Joachim Hein. SPIE, 2019. http://dx.doi.org/10.1117/12.2525114.
Der volle Inhalt der QuelleHatakeyama, Tomoyuki, Masaru Ishizuka, Shinji Nakagawa und Sadakazu Takakuwa. „Estimation of Cooling Performance of PCM Module by Using CFD Analysis With Enthalpy Porosity Method“. In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44274.
Der volle Inhalt der QuelleFelczak, M., und B. Więcek. „Experimental analysis of PCM enhanced electronic devices cooling“. In 2020 Quantitative InfraRed Thermography. QIRT Council, 2020. http://dx.doi.org/10.21611/qirt.2020.143.
Der volle Inhalt der QuelleNovikov, A., D. Lexow und M. Nowottnick. „Cooling of electronic assemblies through PCM containing coatings“. In 2014 Electronics System-Integration Technology Conference (ESTC). IEEE, 2014. http://dx.doi.org/10.1109/estc.2014.6962787.
Der volle Inhalt der QuelleMedrano, Marc, Selma Yilmaz, Falguni K. Sheth, Ingrid Martorell, Halime O. Paksoy und Luisa F. Cabeza. „Salt Water Solutions as PCM for Cooling Applications“. In EuroSun 2010. Freiburg, Germany: International Solar Energy Society, 2010. http://dx.doi.org/10.18086/eurosun.2010.16.20.
Der volle Inhalt der QuelleColvin, David P., Virginia S. Colvin, Yvonne G. Bryant, Linda G. Hayes und Michael A. Spieker. „Development of a Cooling Garment With Encapsulated PCM“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2237.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "PCM cooling"
Gschwander, Stefan, Thomas Haussmann, Georg Hagelstein, Aran Sole, Gonzalo Diarce, Wolfgang Hohenauer, Daniel Lager et al. Standard to determine the heat storage capacity of PCM using hf-DSC with constant heating/cooling rate (dynamic mode). IEA Solar Heating and Cooling Programme, Januar 2015. http://dx.doi.org/10.18777/ieashc-task42-2015-0001.
Der volle Inhalt der QuelleStroman, Richard O., Michael W. Schuette und Gregory S. Page. Cooling System Design for PEM Fuel Cell Powered Air Vehicles. Fort Belvoir, VA: Defense Technical Information Center, Juni 2010. http://dx.doi.org/10.21236/ada525161.
Der volle Inhalt der QuelleBooth, Janice C., Tracy Hudson, Brian A. English, Michael R. Whitley und Michael S. Kranz. Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada567661.
Der volle Inhalt der QuelleNallar, Melisa, und Amelia Gelina. Enhancing building thermal comfort : a review of phase change materials in concrete. Engineer Research and Development Center (U.S.), September 2023. http://dx.doi.org/10.21079/11681/47679.
Der volle Inhalt der QuelleAllen, Jeffrey, Robert Moser, Zackery McClelland, Md Mohaiminul Islam und Ling Liu. Phase-field modeling of nonequilibrium solidification processes in additive manufacturing. Engineer Research and Development Center (U.S.), Dezember 2021. http://dx.doi.org/10.21079/11681/42605.
Der volle Inhalt der Quelle