Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „PEG HYDROGEL“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "PEG HYDROGEL" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "PEG HYDROGEL"
Wen, Jie, Xiaopeng Zhang, Mingwang Pan, Jinfeng Yuan, Zhanyu Jia und Lei Zhu. „A Robust, Tough and Multifunctional Polyurethane/Tannic Acid Hydrogel Fabricated by Physical-Chemical Dual Crosslinking“. Polymers 12, Nr. 1 (19.01.2020): 239. http://dx.doi.org/10.3390/polym12010239.
Der volle Inhalt der QuelleLu, Qiqi, Mirali Pandya, Abdul Jalil Rufaihah, Vinicius Rosa, Huei Jinn Tong, Dror Seliktar und Wei Seong Toh. „Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System“. Stem Cells International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/525367.
Der volle Inhalt der QuelleHenise, Jeff, Shaun D. Fontaine, Brian R. Hearn, Samuel J. Pfaff, Eric L. Schneider, Julia Malato, Donghui Wang, Byron Hann, Gary W. Ashley und Daniel V. Santi. „In Vitro-In Vivo Correlation for the Degradation of Tetra-PEG Hydrogel Microspheres with Tunable β-Eliminative Crosslink Cleavage Rates“. International Journal of Polymer Science 2019 (10.02.2019): 1–7. http://dx.doi.org/10.1155/2019/9483127.
Der volle Inhalt der QuelleSousa, Gustavo F., Samson Afewerki, Dalton Dittz, Francisco E. P. Santos, Daniele O. Gontijo, Sérgio R. A. Scalzo, Ana L. C. Santos et al. „Catalyst-Free Click Chemistry for Engineering Chondroitin Sulfate-Multiarmed PEG Hydrogels for Skin Tissue Engineering“. Journal of Functional Biomaterials 13, Nr. 2 (18.04.2022): 45. http://dx.doi.org/10.3390/jfb13020045.
Der volle Inhalt der QuelleMazzarotta, Alessia, Tania Mariastella Caputo, Edmondo Battista, Paolo Antonio Netti und Filippo Causa. „Hydrogel Microparticles for Fluorescence Detection of miRNA in Mix-Read Bioassay“. Sensors 21, Nr. 22 (18.11.2021): 7671. http://dx.doi.org/10.3390/s21227671.
Der volle Inhalt der QuelleWang, Xiaoyan, Yu Zhang, Wei Xue, Hong Wang, Xiaozhong Qiu und Zonghua Liu. „Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization“. Journal of Biomaterials Applications 31, Nr. 6 (25.11.2016): 923–32. http://dx.doi.org/10.1177/0885328216680343.
Der volle Inhalt der QuelleTanaka, Shizuma, Shinsuke Yukami, Yuhei Hachiro, Yuichi Ohya und Akinori Kuzuya. „Application of DNA Quadruplex Hydrogels Prepared from Polyethylene Glycol-Oligodeoxynucleotide Conjugates to Cell Culture Media“. Polymers 11, Nr. 10 (02.10.2019): 1607. http://dx.doi.org/10.3390/polym11101607.
Der volle Inhalt der QuelleGüney, Aysun, Christina Gardiner, Andrew McCormack, Jos Malda und Dirk Grijpma. „Thermoplastic PCL-b-PEG-b-PCL and HDI Polyurethanes for Extrusion-Based 3D-Printing of Tough Hydrogels“. Bioengineering 5, Nr. 4 (14.11.2018): 99. http://dx.doi.org/10.3390/bioengineering5040099.
Der volle Inhalt der QuelleCao, Ye, Bae Hoon Lee, Scott Alexander Irvine, Yee Shan Wong, Havazelet Bianco Peled und Subramanian Venkatraman. „Inclusion of Cross-Linked Elastin in Gelatin/PEG Hydrogels Favourably Influences Fibroblast Phenotype“. Polymers 12, Nr. 3 (17.03.2020): 670. http://dx.doi.org/10.3390/polym12030670.
Der volle Inhalt der QuelleYao, Fang, Xiao Xia Ji, Bao Ping Lin und Guo Dong Fu. „Synthesis of High Strength and Well-Defined PEG-Based Hydrogel Networks via Click Chemistry“. Advanced Materials Research 304 (Juli 2011): 131–34. http://dx.doi.org/10.4028/www.scientific.net/amr.304.131.
Der volle Inhalt der QuelleDissertationen zum Thema "PEG HYDROGEL"
Phelps, Edward Allen. „Bio-functionalized peg-maleimide hydrogel for vascularization of transplanted pancreatic islets“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45899.
Der volle Inhalt der QuelleRohn, Mathias. „Strukturcharakterisierung photochemisch vernetzter tetra-PEG Hydrogele mit unterschiedlichem Aufbau“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-229602.
Der volle Inhalt der QuelleWeber, Laney M. „Biologically active PEG hydrogel microenvironments for improving encapsulated beta-cell survival and function“. Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3256423.
Der volle Inhalt der QuellePatterson, Patrick Branch. „Creation of a Mechanical Gradient Peg-Collagen Scaffold by Photomasking Techniques“. University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1384720879.
Der volle Inhalt der QuelleÖberg, Hed Kim. „Advanced polymeric scaffolds for functional materials in biomedical applications“. Doctoral thesis, KTH, Ytbehandlingsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139944.
Der volle Inhalt der QuelleQC 20140116
Oborná, Jana. „Řízené uvolňování léčiv z biodegradabilních hydrogelů“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2018. http://www.nusl.cz/ntk/nusl-385283.
Der volle Inhalt der QuelleWestergren, Elisabeth. „Analysis of hydrogels for immobilisation of hepatocytes (HepG2) in 3D cell culturing systems“. Thesis, Linköpings universitet, Teknisk biologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145392.
Der volle Inhalt der QuelleBellat, Vanessa. „Ingénierie d'un nouveau nanobiohybride à base de nanorubans de titanates pour la médecine régénérative“. Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS056/document.
Der volle Inhalt der QuelleThis research work is devoted to new nanohybrid engineering composed of titanate nanoribbons for regenerative medicine. Over a first phase, nanoribbons were synthesized by hydrothermal treatment and their morphological, structural and chemical features were defined. A fine characterization by means of different techniques of transmission electron microscopy mainly enabled to determine their thickness; dimension which had never been measured so far. Subsequently, titanate nanoribbons were functionalized by different home-made heterobifunctional PEG. Those polymers present at one of their extremities specific functional groups being able to couple with numerous biological molecules. Some collagen type peptides containing cellular recognition sites were grafted onto those extremities. The so-formed nanobiohybrid will permit cellular adhesion and proliferation favouring in fine tissue healing and regeneration. To evaluate new nanohybrid biological properties, titanate nanoribbons cytoxicity and aggregating power were determined by MTT tests, performed on two cell populations (fibroblasts and cardiomyocytes) and platelet aggregation tests (human blood). Finally, when used to promote healing process, the new nanobiohybrid was formulated in the form of sodium alginate hydrogel permitting a direct application on damaged tissues. To confirm the interest of this galenic form, initial in vivo tests were realized
Worrell, Kevin. „Chemical and mechanical characterization of fully degradable double-network hydrogels based on PEG and PAA“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48985.
Der volle Inhalt der QuelleFeliciano, Danielle Ferreira. „Cinética de formação do hidrogel de polivinil álcool - polietileno glicol (PVAl-PEG) para a reparação de cartilagem articular“. [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263577.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-18T02:56:18Z (GMT). No. of bitstreams: 1 Feliciano_DanielleFerreira_M.pdf: 2215803 bytes, checksum: 78c936869613a6b313b028d4e7b84078 (MD5) Previous issue date: 2011
Resumo: Defeitos, doenças e acidentes que acometem a cartilagem articular para suportar às constantes solicitações mecânicas que estas regiões estão sujeitas, sendo indicada a utilização de estruturas viscoelástica resistente alto grau de atrito para preencher tais defeitos. Desta forma, foi selecionado o uso de hidrogéis para esta aplicação específica. Hidrogéis a base de poli(álcool vinilico) (PVAl) e polietileno glicol (PEG) apresentam propriedades mais adequadas, como biocompatibilidade, não estimulando reação imunológica ao organismo; baixa adesão de células sanguíneas, evitando coágulos; capacidade de absorção de água (intumecimento), proporcionando lubrificação do material e alto grau de transparência. O processo para obtenção desta blenda e formação de hidrogel foi realizado utilizando uma proporção de 1:9 (PEG:PVAl). O iniciador 2- hidroxi-4'-(2-hidroxietoxi)-2-metilpropiofenona foi adicionado à blenda, em 1% do volume total. È este iniciador, quando estimulado via temperatura, laser ou infravermelho, que irá desencadear as ligações intermacromoleculares de PEG-PVAl permitindo a formação de uma organização grafitizada da blenda dentro do hidrogel. Foi acompanhada a cinética de formação deste hidrogel através de reometria de placas, Espectroscopia de Infravermelho por Transformada de Fourier (FTIR) e Calorimetria Diferencial de Varredura (DSC). As amostras também foram devidamente caracterizadas quanto à condutividade térmica, densidade e absorção óptica. Observou-se que o iniciador ativou as ligações do grupo acetato do PVAl com as hidroxilas do PEG, resultando em formação de grupos ester. São estas ligações que caracterizam a formação do hidrogel grafitizado. Além disso, ocorreu a inversão do módulo viscoso em relação ao módulo de elasticidade, comprovando a reação de grafitização
Abstract: Defects, diseases and accidents that affect the articular cartilage can withstand constant mechanical stresses that they are subject, which indicated the use of viscoelastic structures resistant to high friction to fill these defects. In this way, the use was selected of hydrogels for this application it specifies. To base of I polished hydrogels polyvinyl alcohol (PVA) and polyethylene glycol (PEG) present more appropriate properties, biocompatibility, not stimulating reaction immunologically to the organism; low adhesion of blood cells, avoiding clots; capacity of absorption of water (swelling), providing lubrication of the material and high degree of transparency. The process for getting this blend and formation of hydrogel was carried out using a proportion of 1:9 (PEG:PVA). The initiator hidroxi 2-hidroxi-4 '-(2-hidroxietoxi)-2- metilpropiofenona was added to the blend, in 1 % of the total volume. This initiator, when stimulated he was seeing temperature, laser or infrared, what will be going to unleash the connections intermacromoleculares of PEG-PVA allowing the formation of an grafiting organization of the blend inside the hydrogel. There was accompanied the kinetic one of formation of this hydrogel through parallel plates rheometry, Fourier transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC). The samples also were characterized property as for the thermal condutivity, density and optical absorption. It noticed to itself that the initiator activated the connections of the group acetate of the PVA with the hydroxyl group of PEG, when ester is turning in formation of groups. It is these connections that characterize the formation of the hydrogel grafiting. Besides, it took place to inversion of the viscous module regarding the module of elasticity, proving the reaction of grafiting
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
Bücher zum Thema "PEG HYDROGEL"
Linee guida per la definizione di un piano strategico per lo sviluppo del vettore energetico idrogeno. Pisa: PLUS, 2004.
Den vollen Inhalt der Quelle findenRakwichīan, Watthanaphong, und Mahāwitthayālai Narēsūan. Phāk Wichā Fisik., Hrsg. Rāingān kānwičhai rư̄ang kānphatthanā ʻilekthrōlaisœ̄ phư̄a kānphalit haidrōgēn pen chư̄aphlœ̄ng saʻāt čhāk sēn sǣngʻāthit: Development of the hydrogen electrolyzer for clean fuel production from solar cell. [Bangkok?]: Phāk Wichā Fisik, Khana Witthayāsāt, Mahāwitthayālai Narēsūan, 1996.
Den vollen Inhalt der Quelle findenKrywawych, Steve. Metabolic Acidosis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0081.
Der volle Inhalt der QuellePEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2015.
Den vollen Inhalt der Quelle findenLi, Hui, Haijiang Wang, Dmitri Bessarabov und Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Den vollen Inhalt der Quelle findenPEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2017.
Den vollen Inhalt der Quelle findenLi, Hui, Haijiang Wang, Dmitri Bessarabov und Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Den vollen Inhalt der Quelle findenLi, Hui, Haijiang Wang, Dmitri Bessarabov und Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Den vollen Inhalt der Quelle findenLi, Hui, Haijiang Wang, Dmitri Bessarabov und Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Den vollen Inhalt der Quelle findenQian, Dianwei, Shiwen Tong und Chunlei Huo. Hydrogen-Air PEM Fuel Cell: Integration, Modeling and Control. De Gruyter, Inc., 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "PEG HYDROGEL"
Mendez, Uziel, Hong Zhou und Ariella Shikanov. „Synthetic PEG Hydrogel for Engineering the Environment of Ovarian Follicles“. In Biomaterials for Tissue Engineering, 115–28. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7741-3_9.
Der volle Inhalt der QuelleGao, Guifang, Karen Hubbell, Arndt F. Schilling, Guohao Dai und Xiaofeng Cui. „Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel“. In Methods in Molecular Biology, 391–98. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7021-6_28.
Der volle Inhalt der QuelleZustiak, Silviya Petrova. „Hydrolytically Degradable Polyethylene Glycol (PEG) Hydrogel: Synthesis, Gel Formation, and Characterization“. In Extracellular Matrix, 211–26. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_17.
Der volle Inhalt der QuelleKobel, Stefan A., und Matthias P. Lutolf. „Fabrication of PEG Hydrogel Microwell Arrays for High-Throughput Single Stem Cell Culture and Analysis“. In Methods in Molecular Biology, 101–12. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-388-2_7.
Der volle Inhalt der QuelleHiemstra, Christine, Zhiyuan Zhong, Pieter J. Dijkstra und Jan Feijen. „Stereocomplexed PEG-PLA Hydrogels“. In Hydrogels, 53–65. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_6.
Der volle Inhalt der QuelleMillet, Pierre. „PEM Water Electrolysis“. In Hydrogen Production, 63–116. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527676507.ch3.
Der volle Inhalt der QuelleBeyer, Ulrike, Sebastian Porstmann, Christoph Baum und Clemens Müller. „Production of PEM systems, upscaling and rollout strategy“. In Hydrogen Technologies, 289–320. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22100-2_11.
Der volle Inhalt der QuelleLee, Doo Sung, und Chaoliang He. „In-Situ Gelling Stimuli-Sensitive PEG-Based Amphiphilic Copolymer Hydrogels“. In Biomedical Applications of Hydrogels Handbook, 123–46. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5919-5_7.
Der volle Inhalt der QuelleBarbir, F. „Progress in PEM Fuel Cell Systems Development“. In Hydrogen Energy System, 203–13. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0111-0_14.
Der volle Inhalt der QuelleSecanell, M., A. Jarauta, A. Kosakian, M. Sabharwal und J. Zhou. „PEM Fuel Cells: Modeling“. In Fuel Cells and Hydrogen Production, 235–93. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7789-5_1019.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "PEG HYDROGEL"
Jang, Eunji, Saemi Park, Hyun Jong Lee, Keshava Murthy P.S und Won-Gun Koh. „Development of phenol detecting biosensor using PEG hydrogel microparticles“. In 2010 IEEE 3rd International Nanoelectronics Conference (INEC 2010). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5425132.
Der volle Inhalt der QuelleArcaute, K., L. Ochoa, B. K. Mann und R. B. Wicker. „Stereolithography of PEG Hydrogel Multi-Lumen Nerve Regeneration Conduits“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81436.
Der volle Inhalt der QuelleCoelho, Carlos D. F., João A. Jesus, Daniela C. Vaz, Ricardo Lagoa und Maria João Moreno. „BSA-PEG Hydrogel: A Novel Protein-Ligand Binding 3D Matrix“. In Biosystems in Toxicology and Pharmacology – Current Challenges. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/bitap-12878.
Der volle Inhalt der QuelleAbdul Hamid, Zuratul Ain, Anton Blencowe, Berkay Ozcelik, Greg Qiao, Geoff Stevens, Jason Palmer, Eighth Keren M. Abberton, Wayne A. Morrison und Anthony K. J. Penington. „In vivo studies of biocompatible PEG-based hydrogel scaffolds with biofactors“. In 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2014. http://dx.doi.org/10.1109/iecbes.2014.7047498.
Der volle Inhalt der QuelleWatanabe, Takaichi, und Shoji Takeuchi. „Microfluidic formation of monodisperse tetra-PEG hydrogel microbeads for cell encapsulation“. In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2016. http://dx.doi.org/10.1109/memsys.2016.7421728.
Der volle Inhalt der QuelleEarnshaw, Audrey L., Justine J. Roberts, Garret D. Nicodemus, Stephanie J. Bryant und Virginia L. Ferguson. „The Mechanical Behavior of Engineered Hydrogels“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206705.
Der volle Inhalt der QuelleLee, Y. E., und W. Chen. „Synthesis and characterization of novel crosslinked PEG-graft-chitosan/hyaluronic acid hydrogel“. In 2007 IEEE 33rd Annual Northeast Bioengineering Conference. IEEE, 2007. http://dx.doi.org/10.1109/nebc.2007.4413372.
Der volle Inhalt der QuelleGeisler, Chris G., Ho-Lung Li, Qingwei Zhang, Jack G. Zhou, David M. Wootton und Peter I. Lelkes. „Thermosensitive/Photocrosslinkable Hydrogel for Soft Tissue Scaffold Printing“. In ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50166.
Der volle Inhalt der QuelleGeisler, Chris G., Ho-Lung Li, David M. Wootton, Peter I. Lelkes und Jack G. Zhou. „Soft Biomaterial Study for 3-D Tissue Scaffold Printing“. In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34274.
Der volle Inhalt der QuelleCherukupalli, Abhimanyu, Michael Pellegrini, Ron Falkowski, Michael Medini und Ronke Olabisi. „The influence of PEG molecular weight on apparent hydrogel microsphere size as measured by the Coulter principle“. In 2014 40th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2014. http://dx.doi.org/10.1109/nebec.2014.6972754.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "PEG HYDROGEL"
James, Brian D., George N. Baum, Julie Perez und Kevin N. Baum. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production. Office of Scientific and Technical Information (OSTI), Dezember 2009. http://dx.doi.org/10.2172/1218403.
Der volle Inhalt der QuelleStaples, L., und D. P. Bloomfield. Hydrogen Supply System for Small PEM Fuel Cell Stacks. Fort Belvoir, VA: Defense Technical Information Center, Juli 1997. http://dx.doi.org/10.21236/ada396718.
Der volle Inhalt der QuelleJoseph Schwartz, Hankwon Lim und Raymond Drnevich. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells. Office of Scientific and Technical Information (OSTI), Dezember 2010. http://dx.doi.org/10.2172/1026502.
Der volle Inhalt der QuelleBarbir, F., F. Marken, B. Bahar und J. A. Kolde. Development of a 10 kW hydrogen/air PEM fuel cell stack. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/460279.
Der volle Inhalt der QuelleMahadevan, K., K. Judd, H. Stone, J. Zewatsky, A. Thomas, H. Mahy und D. Paul. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/1219590.
Der volle Inhalt der QuelleBeckert, Werner F., Ottmar H. Dengel, Robert D. Lynch, Gary T. Bowman und Aaron J. Greso. Solid Hydride Hydrogen Source for Small Proton Exchange Membrane (PEM) Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, Mai 1997. http://dx.doi.org/10.21236/ada371137.
Der volle Inhalt der QuelleSieverman, Joe, und Stephen Szymanski. Validation of an Advanced High-Pressure PEM Electrolyzer and Composite Hydrogen Storage. Office of Scientific and Technical Information (OSTI), März 2020. http://dx.doi.org/10.2172/1783792.
Der volle Inhalt der QuelleWalker, Charles W., Jiang Jr., Chu Rhongzhong und Deryn. An Overview of Hydrogen Generation and Storage for Low-Temperature PEM Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada372504.
Der volle Inhalt der QuelleThomas H. Vanderspurt, Zissis Dardas, Ying She, Mallika Gummalla und Benoit Olsommer. On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. Office of Scientific and Technical Information (OSTI), Dezember 2005. http://dx.doi.org/10.2172/861890.
Der volle Inhalt der QuelleEdward F. Kiczek. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/913332.
Der volle Inhalt der Quelle