Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Perovskity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Perovskity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Perovskity"
Meyer, Edson, Dorcas Mutukwa, Nyengerai Zingwe und Raymond Taziwa. „Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites“. Metals 8, Nr. 9 (27.08.2018): 667. http://dx.doi.org/10.3390/met8090667.
Der volle Inhalt der QuelleYang, Bilin, Yujun Xie, Pan Zeng, Yurong Dong, Qiongrong Ou und Shuyu Zhang. „Tightly Compacted Perovskite Laminates on Flexible Substrates via Hot-Pressing“. Applied Sciences 10, Nr. 6 (11.03.2020): 1917. http://dx.doi.org/10.3390/app10061917.
Der volle Inhalt der QuelleMitchell, Roger H., Mark D. Welch und Anton R. Chakhmouradian. „Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition“. Mineralogical Magazine 81, Nr. 3 (Juni 2017): 411–61. http://dx.doi.org/10.1180/minmag.2016.080.156.
Der volle Inhalt der QuelleKorolev, Viacheslav I., Anatoly P. Pushkarev, Petr A. Obraztsov, Anton N. Tsypkin, Anvar A. Zakhidov und Sergey V. Makarov. „Enhanced terahertz emission from imprinted halide perovskite nanostructures“. Nanophotonics 9, Nr. 1 (27.12.2019): 187–94. http://dx.doi.org/10.1515/nanoph-2019-0377.
Der volle Inhalt der QuelleMcDonald, Calum, Chengsheng Ni, Paul Maguire, Paul Connor, John Irvine, Davide Mariotti und Vladimir Svrcek. „Nanostructured Perovskite Solar Cells“. Nanomaterials 9, Nr. 10 (18.10.2019): 1481. http://dx.doi.org/10.3390/nano9101481.
Der volle Inhalt der QuelleHeidari Gourji, Fatemeh, und Dhayalan Velauthapillai. „A Review on Cs-Based Pb-Free Double Halide Perovskites: From Theoretical and Experimental Studies to Doping and Applications“. Molecules 26, Nr. 7 (01.04.2021): 2010. http://dx.doi.org/10.3390/molecules26072010.
Der volle Inhalt der QuelleEra, Masanao, Yumeko Komatsu und Naotaka Sakamoto. „Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing“. Journal of Nanoscience and Nanotechnology 16, Nr. 4 (01.04.2016): 3338–42. http://dx.doi.org/10.1166/jnn.2016.12295.
Der volle Inhalt der QuelleWyn Jones, Eurig, Peter James Holliman, Leon Bowen, Arthur Connell, Christopher Kershaw und Diana Elizabeth Meza-Rojas. „Hybrid Al2O3-CH3NH3PbI3 Perovskites towards Avoiding Toxic Solvents“. Materials 13, Nr. 1 (06.01.2020): 243. http://dx.doi.org/10.3390/ma13010243.
Der volle Inhalt der QuelleWang, Fangfang, Qing Chang, Yikai Yun, Sizhou Liu, You Liu, Jungan Wang, Yinyu Fang et al. „Hole-Transporting Low-Dimensional Perovskite for Enhancing Photovoltaic Performance“. Research 2021 (28.05.2021): 1–11. http://dx.doi.org/10.34133/2021/9797053.
Der volle Inhalt der QuelleWong, Walter P. D., John V. Hanna und Andrew C. Grimsdale. „The classification of 1D `perovskites'“. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 77, Nr. 3 (20.05.2021): 408–15. http://dx.doi.org/10.1107/s2052520621004376.
Der volle Inhalt der QuelleDissertationen zum Thema "Perovskity"
Strejček, Josef. „Studium syntézy a struktury keramických perovskitových materiálů pro energetické aplikace“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229301.
Der volle Inhalt der QuelleCihlář, Jaroslav. „Studium perovskitových oxidových katalyzátorů pro parciální oxidace metanu“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2011. http://www.nusl.cz/ntk/nusl-233339.
Der volle Inhalt der QuelleBartoníčková, Eva. „Syntéza a analýza kompozitních oxidových keramik v přítomnosti nekonvenčních energetických polí“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2010. http://www.nusl.cz/ntk/nusl-233312.
Der volle Inhalt der QuelleGavranović, Stevan. „Monokrystaly perovskitů pro detekci elektromagnetického záření“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-445139.
Der volle Inhalt der QuelleJančík, Procházková Anna. „Syntéza a studium nano-strukturovaných perovskitů pro aplikace v organické elektronice“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2020. http://www.nusl.cz/ntk/nusl-433268.
Der volle Inhalt der QuelleLiška, Petr. „Optická charakterizace pokročilých nanomateriálů s vysokým laterálním rozlišením“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443725.
Der volle Inhalt der QuelleDobeš, Jiří. „Studium přípravy a katalytické aktivity dopovaných ABO3 perovskitů pro syntézu vodíku“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2015. http://www.nusl.cz/ntk/nusl-217156.
Der volle Inhalt der QuelleMlčkovová, Hana. „Studium dielektrických vlastností krystalů perovskitů“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-445134.
Der volle Inhalt der QuelleBufaiçal, Leandro Félix de Sousa. „Propriedades estruturais, eletrônicas e magnéticas dos óxidos Ca2-xLaxFelrO6, Sr2-xLaxFelrO6 e TbMnO3“. [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278527.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-15T19:42:04Z (GMT). No. of bitstreams: 1 Bufaical_LeandroFelixdeSousa_D.pdf: 2467040 bytes, checksum: 4460b75c04d570fb27584b7dfff2c5f3 (MD5) Previous issue date: 2010
Resumo: Há muitas décadas os óxidos de metais de transição são tema de grande interesse científico devido à grande variedade de propriedades físicas interessantes que apresentam, com suas possíveis aplicações tecnológicas. Mais recentemente, por exemplo, os óxidos de metais de transição com propriedades multiferróicas ganharam destaque na comunidade científica como potenciais dispositivos magneto-eletrônicos. Muitos óxidos de metais de transição se formam na estrutura cristalina chamada perovskita simples, com simetria cúbica ou distorcida. Muitos outros óxidos podem se cristalizar numa variante da perovskita simples, a chamada perovskita dupla ordenada (PDO), que possui fórmula geral A2B¿B¿¿O6, onde o íon A ocupa os vértices do cubo enquanto os cátions B¿ e B¿¿ se alternam nos centros dos octaedros de oxigênio. Dois compostos com estrutura PDO bastante estudados são o Sr2FeReO6 e Sr2FeMoO6 devido ao fato de apresentarem, entre outras propriedades interessantes, comportamento meio-metálico (halfmetal), magnetrorresistência por tunelamento à temperatura ambiente, ferrimagnetismo com TC acima de 400K em ambos os compostos. As propriedades estruturais, eletrônicas e magnéticas dessas PDOs estão altamente conectadas e são fortemente dependentes do grau de hibridização dos orbitais d dos cátions B¿¿. Assim, se fazem importantes os estudos de novos compostos PDO a fim de se investigar as idéias correntes propostas em literatura e, nesse contexto, reportamos aqui os resultados da síntese e caracterização das séries inéditas Ca2-xLaxFeIrO6 e Sr2-xLaxFeIrO6, onde o Ir, assim como o Re e Mo, é metal de transição, no caso com caráter 5d, e pode assumir diferentes estados de valência. As medidas de magnetização indicaram que estes sistemas tendem a evoluir de antiferromagnéticos nas extremidades das séries, x = 0 e x = 2, para ferrimagnéticos em regiões intermediárias da série. Medidas realizadas no composto de maior magnetização da série de Sr, o Sr1.2La0.8FeIrO6, indicaram que este composto se ordena ferrimagneticamente em torno de 700 K, sendo esta a mais elevada TC já reportada para perovskitas duplas. Medidas de resistividade em função da temperatura indicaram que os compostos apresentam comportamento isolante e praticamente nenhum efeito magneto-resistivo. No composto antiferromagnético Sr2FeIrO6 foi estudada a resistividade sob efeito de pressão e, embora não tenha ocorrido nenhuma transição metal-isolante, ocorre uma diminuição sistemática da resistência do material e da inclinação da curva à medida que a pressão aumenta, indicando um comportamento do tipo isolante de Mott nesse composto. Neste trabalho são apresentados também resultados dos estudos realizados na perovskita TbMnO3. Realizamos neste óxido medidas de susceptibilidade magnética, calor específico, Ressonância Paramagnética Eletrônica (EPR) e absorção de microondas para várias temperaturas. A susceptibilidade magnética e o calor específico confirmaram para a amostra estudada as temperaturas de transição de fase magnética (TN = 41 K) e ferroelétrica (Tlock) já reportadas em literatura. Os espectros de EPR mostraram para todo o intervalo de temperatura uma única linha consistente com uma forma de linha Lorentziana e um valor de g independente da temperatura g = 1.96(3) consistente com Mn3+ em um meio isolante. A largura de linha sofreu um alargamento com a temperatura seguindo uma lei do tipo C/T. Esse alargamento impediu a observação dos espectros de ressonância em torno das regiões de temperaturas das transições de fase magnética e ferroelétrica. Devido à forte dependência da constante dielétrica com a freqüência, as medidas realizadas com a cavidade de campo elétrico não permitiram a observação de qualquer anomalia em torno das temperaturas de transições
Abstract: For many decades the transition metal oxides are subject of great scientific interest because of the wide variety of interesting physical properties and their potential technological applications. More recently, for example, oxides of transition metals with multiferroic properties have been considered as potential magneto-electronic devices. Many transition metal oxides form in the perovskite crystalline structure, with cubic or distorted symmetry. Many other oxides can crystallize in a variant of the simple perovskite, called the ordered double perovskite (ODP), which has the general formula A2B'B''O6, where the A ion occupies the vertices of the cube while the cations B 'and B'' alternate in the centers of the oxygen octahedra. Sr2FeReO6 and Sr2FeMoO6 are two compounds with the ODP structure which were extensively studied due to their interesting properties such as half-metal behavior, tunneling magnetoresistance at room temperature and ferrimagnetic order (TC above 400 K). The structural, electronic and magnetic properties of these ODPs are highly correlated and are strongly dependent on the strong d orbitals hybridization of the of the B'' cations. Therefore, studies of new ODP compounds are important in order to investigate the current ideas proposed in the literature and improve the understanding of their physical properties. We report here our results of synthesis and characterization of the unpublished series Ca2-xLaxFeIrO6 and Sr2-xLaxFeIrO6, where the Ir such as Re and Mo are transition metal, with d character that can assume different valence states. The magnetic measurements indicated that those systems tend to evolve from antiferromagnetics at the ends of the series, x = 0 and x = 2, to ferrimagnetic for intermediate regions of the series. Measurements performed in the compound of higher magnetization in the Sr serie, Sr1.2La0.8FeIrO6 indicated that this compound orders ferrimagnetic around 700 K, which is the highest TC ever reported for double perovskites. Resistivity measurements as a function of temperature indicated that these compounds also exhibit insulating behavior and virtually no magneto-resistive effect. In the antiferromagnetic compound Sr2FeIrO6, the effect of pressure on the resistivity was investigated, and although no metal-insulator transition was seen, there is a systematic decrease of the resistance and the slope of the curve as the pressure increases, indicating a Mott insulator-like behavior in this compound. This work also presents results on the TbMnO3 perovskite. We have performed magnetic susceptibility, specific heat, Electron Paramagnetic Resonance (EPR) and microwave absorption measurements at various temperatures. Magnetic susceptibility and specific heat data confirmed the ocurrence of a magnetic (TN = 41 K) and ferroelectric (Tlock) phase transition. The EPR spectra showed, for the entire temperature range measured, a single Lorentzian line shape and T independent g-value = 1.96 (3), consistent with the resonance of Mn3+ in an insulating environment. The width line broadens with the decreasing temperature following a C/T law. This broadening prevented the observation of the resonance spectra near the magnetic and ferroelectric phase transitions. Because of the strong frequency dependence of the dielectric constant, the measurements performed with the electric field cavity also did not allow observation of any anomaly around the ferroelectric transition
Doutorado
Física da Matéria Condensada
Doutor em Ciências
Tanabe, Eurico Yuji. „\"Óxidos do tipo Perovskitas para reações de decomposição direta de NO e redução de NO com CO\"“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/75/75131/tde-16042007-111408/.
Der volle Inhalt der QuelleA important technology to reduce the atmospheric pollution is the use of catalysts, to transform high pollutant as NO in other inoffensive gases to the environment. In this work, the perovskite oxides La2CuO4, LaNiO3, LaMnO3, La1,4Sr0,6CuO4, La0,7Sr0,3NiO3 e La0,7Sr0,3MnO3 were prepared through co-precipitation method and characterized by X-ray diffraction and temperature programmed reduction, nitrogen physsisorption and subsequent valued on the reduction of NO by CO and the direct decomposition of NO. These reaction were tested at 400oC and 500oC temperatures and times of reaction between 7 and 10 hours. Through the catalytic tests the La2CuO4 catalyst shown the best activity to the reduce reaction, and when the La is partially substituted by strontium all the catalyst showed a better significant for all the catalysts. The XRD analysis shown that the catalytic structure of the catalysts were preserved after the catalytic test yet.
Bücher zum Thema "Perovskity"
Tilley, Richard J. D. Perovskites. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118935651.
Der volle Inhalt der QuelleZhou, Ye, und Yan Wang, Hrsg. Perovskite Quantum Dots. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6637-0.
Der volle Inhalt der QuelleArul, Narayanasamy Sabari, und Vellalapalayam Devaraj Nithya, Hrsg. Revolution of Perovskite. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1267-4.
Der volle Inhalt der QuelleSum, Tze-Chien, und Nripan Mathews, Hrsg. Halide Perovskites. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527800766.
Der volle Inhalt der QuelleKundu, Asish K. Magnetic Perovskites. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2761-8.
Der volle Inhalt der QuelleOsako, Masahiro. Thermal diffusivity of MgSiO₃ perovskite. Misasa, Japan: Institute for Study of the Earth's Interior, Okayama University, 1990.
Den vollen Inhalt der Quelle findenPark, Nam-Gyu, Michael Grätzel und Tsutomu Miyasaka, Hrsg. Organic-Inorganic Halide Perovskite Photovoltaics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8.
Der volle Inhalt der QuelleWijn, H. P. J., Hrsg. Halide Perovskite-Type Layer Structures. Berlin/Heidelberg: Springer-Verlag, 2001. http://dx.doi.org/10.1007/b79064.
Der volle Inhalt der QuelleProkopalo, O. I. Ėlektrofizicheskie svoĭstva oksidov semeĭstva perovskita. Rostov-na-Donu: Izd-vo Rostovskogo universiteta, 1985.
Den vollen Inhalt der Quelle findenWijn, H. P. J., Hrsg. Perovskites I (Part a). Berlin/Heidelberg: Springer-Verlag, 1996. http://dx.doi.org/10.1007/b42332.
Der volle Inhalt der QuelleBuchteile zum Thema "Perovskity"
Tiwari, Udit, und Sahab Dass. „Moisture Stable Soot Coated Methylammonium Lead Iodide Perovskite Photoelectrodes for Hydrogen Production in Water“. In Springer Proceedings in Energy, 141–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_18.
Der volle Inhalt der QuelleGiorno, Lidietta, und Heiner Strathmann. „Perovskite Membranes“. In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_2250-1.
Der volle Inhalt der QuelleSurendran, K. P., und Rick Ubic. „Perovskites“. In Microwave Materials and Applications 2V Set, 81–148. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119208549.ch3.
Der volle Inhalt der QuelleFedorov, Vladimir. „Perovskites“. In Ceramics Science and Technology, 257–97. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631735.ch6.
Der volle Inhalt der QuelleFedorov, Vladimir. „Perovskites“. In Ceramics Science and Technology, 257–97. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch18.
Der volle Inhalt der QuelleFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi und Pham Thi Thu Trang. „Organic Hole-Transporting Materials“. In Perovskite Solar Cells, 159–82. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-10.
Der volle Inhalt der QuelleFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi und Pham Thi Thu Trang. „Inorganic Hole-Transporting Materials“. In Perovskite Solar Cells, 183–200. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-11.
Der volle Inhalt der QuelleFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi und Pham Thi Thu Trang. „Hole-Transporting-Free Perovskite Solar Cells“. In Perovskite Solar Cells, 201–18. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-12.
Der volle Inhalt der QuelleFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi und Pham Thi Thu Trang. „Tin-Based Perovskites“. In Perovskite Solar Cells, 221–34. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-14.
Der volle Inhalt der QuelleFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi und Pham Thi Thu Trang. „Germanium-Based Perovskites“. In Perovskite Solar Cells, 235–38. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Perovskity"
Cai, Zhuangli, Zuolin Liu, Bin Yang, Min Yang und Shangchao Lin. „Diffusion-Mediated Anharmonic Phonon Transport and Thermal Conductivity Reduction in Defective Hybrid Perovskites“. In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-62601.
Der volle Inhalt der QuelleJena, Hrudananda, und B. Rambabu. „Effect of Sonochemical, Regenerative Sol Gel and Microwave Assisted Synthesis Techniques on the Formation of Dense Electrolytes and Porus Electrodes for All Perovskite IT-SOFCs“. In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97262.
Der volle Inhalt der QuelleHameed, Areeba, Khulood Logade, Naba Ali, Priya Ghosh, Sadiya Shafath, Sumaiya Salim, Anchu Ashok, Anand Kumar und Mohd Ali H. Saleh Saad. „Highly active Bifunctional Lamo3 (M=Cr, Mn, Fe, Co, Ni) Perovskites for Oxygen Reduction and Oxygen Evolution Reaction in Alkaline Media“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0106.
Der volle Inhalt der QuellePedesseau, L., M. Kepenekian, D. Sapori, Y. Huang, A. Rolland, A. Beck, C. Cornet et al. „Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells“. In SPIE OPTO, herausgegeben von Alexandre Freundlich, Laurent Lombez und Masakazu Sugiyama. SPIE, 2016. http://dx.doi.org/10.1117/12.2214007.
Der volle Inhalt der QuelleZhang, Jingyi, Xianfeng Gao, Yelin Deng, Yuanchun Zha und Chris Yuan. „Cradle-to-Grave Life Cycle Assessment of Solid-State Perovskite Solar Cells“. In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2970.
Der volle Inhalt der QuelleYu, Zhengshan J., Bo Chen, Jinsong Huang und Zachary C. Holman. „Manufacturable Perovskite/Silicon Tandems with Solution-Processed Perovskites on Textured Silicon Bottom Cells“. In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300605.
Der volle Inhalt der QuelleGhahremani, Amir H., und Thad Druffel. „Intense Pulse Light Annealing for Perovskite Photovoltaics“. In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8394.
Der volle Inhalt der QuelleCtibor, P., P. Rohan, K. Neufuss, B. Kolman, J. Dubsky und P. Chraska. „Plasma Spraying of Titanates I“. In ITSC 2000, herausgegeben von Christopher C. Berndt. ASM International, 2000. http://dx.doi.org/10.31399/asm.cp.itsc2000p0945.
Der volle Inhalt der QuelleStefanovsky, S. V., A. G. Ptashkin, Y. M. Kuliako, S. A. Perevalov, S. V. Yudintsev, A. M. Chekmarev, A. V. Ochkin und A. M. Chemarev. „Development of Actinide-Containing Waste Immobilization Process“. In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4673.
Der volle Inhalt der QuelleManzoor, Salman, Jakob Hausele, Kevin A. Bush, Zhengshan J. Yu, Michael D. McGehee und Zachary C.Holman. „Current-matching in two-terminal perovskite/silicon tandems employing wide-bandgap perovskites and varying light-management schemes“. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547757.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Perovskity"
Brosha, E. L., B. W. Chung und F. H. Garzon. Electrochemical studies of perovskite mixed conductors. Office of Scientific and Technical Information (OSTI), Dezember 1994. http://dx.doi.org/10.2172/10103797.
Der volle Inhalt der QuelleNowicki, Suzanne Florence, Charles Olson Leak, Jeremy Tyler Tisdale, Duc Ta Vo und Michael Duncan Yoho. Performance Characterization of Halide Perovskite Detectors. Office of Scientific and Technical Information (OSTI), Februar 2020. http://dx.doi.org/10.2172/1599027.
Der volle Inhalt der QuelleHuang, Jinsong. Developing Efficient Perovskite/Silicon Tandem Devices. Office of Scientific and Technical Information (OSTI), Dezember 2019. http://dx.doi.org/10.2172/1583171.
Der volle Inhalt der QuelleMitzi, David, und Yanfa Yan. High Performance Perovskite-Based Solar Cells. Office of Scientific and Technical Information (OSTI), Januar 2020. http://dx.doi.org/10.2172/1582433.
Der volle Inhalt der QuelleMcGehee, Michael, und Tonio Buonassisi. Perovskite Solar Cells for High-Efficiency Tandems. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1420976.
Der volle Inhalt der QuelleChern, Ming Y., F. J. DiSalvo, J. B. Parise und Joyce A. Goldstone. The Distortion of Anti-Perovskite Nitride AsNCa3. Fort Belvoir, VA: Defense Technical Information Center, Mai 1991. http://dx.doi.org/10.21236/ada236719.
Der volle Inhalt der QuelleVanderbilt, David. Structural Properties of Ferroelectric Perovskites. Fort Belvoir, VA: Defense Technical Information Center, Februar 1998. http://dx.doi.org/10.21236/ada337843.
Der volle Inhalt der QuelleRigdon, Katharine, und Anthony McDaniel. Solar thermochemical hydrogen production with complex perovskite oxides. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1762991.
Der volle Inhalt der QuelleNowick, A. Protons and lattice defects in perovskite-related oxides. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/7172698.
Der volle Inhalt der QuelleRambabu Bobba. Dense Membranes for Anode Supported all Perovskite IT-SOFCs. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/902844.
Der volle Inhalt der Quelle