Zeitschriftenartikel zum Thema „Phase change memory GST“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Phase change memory GST" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
S. A.Aziz, M., F. H. M.Fauzi, Z. Mohamad, and R. I. Alip. "The Effect of Channel Length on Phase Transition of Phase Change Memory." International Journal of Engineering & Technology 7, no. 3.11 (2018): 25. http://dx.doi.org/10.14419/ijet.v7i3.11.15923.
Der volle Inhalt der QuelleBehrens, Mario, Andriy Lotnyk, Hagen Bryja, Jürgen W. Gerlach, and Bernd Rauschenbach. "Structural Transitions in Ge2Sb2Te5 Phase Change Memory Thin Films Induced by Nanosecond UV Optical Pulses." Materials 13, no. 9 (2020): 2082. http://dx.doi.org/10.3390/ma13092082.
Der volle Inhalt der QuelleGolovchak, R., Y. G. Choi, S. Kozyukhin, et al. "Oxygen incorporation into GST phase-change memory matrix." Applied Surface Science 332 (March 2015): 533–41. http://dx.doi.org/10.1016/j.apsusc.2015.01.203.
Der volle Inhalt der QuelleStern, Keren, Yair Keller, Christopher M. Neumann, Eric Pop, and Eilam Yalon. "Temperature-dependent thermal resistance of phase change memory." Applied Physics Letters 120, no. 11 (2022): 113501. http://dx.doi.org/10.1063/5.0081016.
Der volle Inhalt der QuelleKim, Sung Soon, Jun Hyun Bae, Woo Hyuck Do, et al. "Thermal Stress Model for Phase Change Random Access Memory." Solid State Phenomena 124-126 (June 2007): 37–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.37.
Der volle Inhalt der QuelleRaeis-Hosseini, Niloufar, and Junsuk Rho. "Dual-Functional Nanoscale Devices Using Phase-Change Materials: A Reconfigurable Perfect Absorber with Nonvolatile Resistance-Change Memory Characteristics." Applied Sciences 9, no. 3 (2019): 564. http://dx.doi.org/10.3390/app9030564.
Der volle Inhalt der QuelleAgarwal, Satish C. "Role of potential fluctuations in phase-change GST memory devices." physica status solidi (b) 249, no. 10 (2012): 1956–61. http://dx.doi.org/10.1002/pssb.201200362.
Der volle Inhalt der QuellePacco, Antoine, Ju-Geng Lai, Pallavi Puttarame Gowda, et al. "Wet Chemical Recess Etching of Ge2Sb2Te5 for 3D PCRAM Memory Applications." ECS Meeting Abstracts MA2022-01, no. 28 (2022): 1262. http://dx.doi.org/10.1149/ma2022-01281262mtgabs.
Der volle Inhalt der QuelleYin, You, and Sumio Hosaka. "Crystal Growth Suppression by N-Doping into Chalcogenide for Application to Next-Generation Phase Change Memory." Key Engineering Materials 497 (December 2011): 101–5. http://dx.doi.org/10.4028/www.scientific.net/kem.497.101.
Der volle Inhalt der QuelleXue, Yuan, Sannian Song, Xiaogang Chen, et al. "Enhanced performance of phase change memory by grain size reduction." Journal of Materials Chemistry C 10, no. 9 (2022): 3585–92. http://dx.doi.org/10.1039/d1tc06045g.
Der volle Inhalt der QuelleWang, Rui, Yonghui Zheng, Qianchen Liu, et al. "Coherent Structure in Indium Doped Phase Change Materials." Materials 18, no. 5 (2025): 934. https://doi.org/10.3390/ma18050934.
Der volle Inhalt der QuellePan, Yuanchun, Zhen Li, and Zhonglu Guo. "Lattice Thermal Conductivity of mGeTe•nSb2Te3 Phase-Change Materials: A First-Principles Study." Crystals 9, no. 3 (2019): 136. http://dx.doi.org/10.3390/cryst9030136.
Der volle Inhalt der QuelleRen, W., M. Zhong, J. Dai, P. Mukundhan, and M. Zhang. "Phase change memory alloys: GST cell array characterization using picosecond ultrasonics." Microelectronic Engineering 88, no. 5 (2011): 822–26. http://dx.doi.org/10.1016/j.mee.2010.07.016.
Der volle Inhalt der QuelleZhu, Yueqin, Zhonghua Zhang, Sannian Song, et al. "Ni-doped GST materials for high speed phase change memory applications." Materials Research Bulletin 64 (April 2015): 333–36. http://dx.doi.org/10.1016/j.materresbull.2015.01.016.
Der volle Inhalt der QuelleWang, Miao, Yegang Lu, Xiang Shen, et al. "Effect of Sb2Se on phase change characteristics of Ge2Sb2Te5." CrystEngComm 17, no. 26 (2015): 4871–76. http://dx.doi.org/10.1039/c5ce00656b.
Der volle Inhalt der QuelleLei, Xin-Qing, Jia-He Zhu, Da-Wei Wang, and Wen-Sheng Zhao. "Design for Ultrahigh-Density Vertical Phase Change Memory: Proposal and Numerical Investigation." Electronics 11, no. 12 (2022): 1822. http://dx.doi.org/10.3390/electronics11121822.
Der volle Inhalt der QuelleKim, JunHo, and Ki-Bong Song. "Simulation Study on Heat Conduction of a Nanoscale Phase-Change Random Access Memory Cell." Journal of Nanoscience and Nanotechnology 6, no. 11 (2006): 3474–78. http://dx.doi.org/10.1166/jnn.2006.17963.
Der volle Inhalt der QuelleBartlett, Philip N., Sophie L. Benjamin, C. H. (Kees) de Groot, et al. "Non-aqueous electrodeposition of functional semiconducting metal chalcogenides: Ge2Sb2Te5 phase change memory." Materials Horizons 2, no. 4 (2015): 420–26. http://dx.doi.org/10.1039/c5mh00030k.
Der volle Inhalt der QuelleLIAO, YUANBAO, JIAJIA WU, LING XU, et al. "FORMATION, STRUCTURE AND PROPERTIES OF HIGHLY ORDERED SUB-30-nm PHASE CHANGE MATERIALS (GST) NANOPARTICLE ARRAYS." Surface Review and Letters 17, no. 04 (2010): 405–10. http://dx.doi.org/10.1142/s0218625x10014259.
Der volle Inhalt der QuelleSun, Zhi Mei, Yuan Chun Pan, Bai Sheng Sa, and Jian Zhou. "Ab Initio Study on Hexagonal Ge2Sb2Te5-A Phase-Change Material for Nonvolatile Memories." Materials Science Forum 687 (June 2011): 7–11. http://dx.doi.org/10.4028/www.scientific.net/msf.687.7.
Der volle Inhalt der QuelleMakino, Kotaro, Kosaku Kato, Yuta Saito, et al. "Terahertz spectroscopic characterization of Ge2Sb2Te5 phase change materials for photonics applications." Journal of Materials Chemistry C 7, no. 27 (2019): 8209–15. http://dx.doi.org/10.1039/c9tc01456j.
Der volle Inhalt der QuelleHuang, Ruiying. "Research progress on Sb-rich nanostructured films for phase-change memory." MATEC Web of Conferences 404 (2024): 03008. http://dx.doi.org/10.1051/matecconf/202440403008.
Der volle Inhalt der QuelleLiu, Cheng, Yonghui Zheng, Tianjiao Xin, Yunzhe Zheng, Rui Wang, and Yan Cheng. "The Relationship between Electron Transport and Microstructure in Ge2Sb2Te5 Alloy." Nanomaterials 13, no. 3 (2023): 582. http://dx.doi.org/10.3390/nano13030582.
Der volle Inhalt der QuelleGuo, Pengfei, Andrew Sarangan, and Imad Agha. "A Review of Germanium-Antimony-Telluride Phase Change Materials for Non-Volatile Memories and Optical Modulators." Applied Sciences 9, no. 3 (2019): 530. http://dx.doi.org/10.3390/app9030530.
Der volle Inhalt der QuelleAlip, Rosalena Irma, Ryota Kobayashi, Yu Long Zhang, Zulfakri bin Mohamad, You Yin, and Sumio Hosaka. "A Novel Phase Change Memory with a Separate Heater Characterized by Constant Resistance for Multilevel Storage." Key Engineering Materials 534 (January 2013): 136–40. http://dx.doi.org/10.4028/www.scientific.net/kem.534.136.
Der volle Inhalt der QuelleKang, Shinyoung, Juyoung Lee, Myounggon Kang, and Yunheub Song. "Achievement of Gradual Conductance Characteristics Based on Interfacial Phase-Change Memory for Artificial Synapse Applications." Electronics 9, no. 8 (2020): 1268. http://dx.doi.org/10.3390/electronics9081268.
Der volle Inhalt der QuelleKim, Yewon, Byeol Han, Yu-Jin Kim, et al. "Atomic layer deposition and tellurization of Ge–Sb film for phase-change memory applications." RSC Advances 9, no. 30 (2019): 17291–98. http://dx.doi.org/10.1039/c9ra02188d.
Der volle Inhalt der QuelleSourav, Swapnil, Amit Krishna Dwivedi, and Aminul Islam. "Investigating Phase Transform Behavior in Indium Selenide Based RAM and Its Validation as a Memory Element." Journal of Materials 2016 (September 22, 2016): 1–7. http://dx.doi.org/10.1155/2016/6123268.
Der volle Inhalt der QuelleWang, Zhiyu, and Daolin Cai. "Analysis of Influencing Factors on Multilevel Storage Performance in Phase-Change Random Access Memory." Electronics 13, no. 19 (2024): 3802. http://dx.doi.org/10.3390/electronics13193802.
Der volle Inhalt der QuelleQiao, Yang, Jin Zhao, Haodong Sun, et al. "Pt Modified Sb2Te3 Alloy Ensuring High−Performance Phase Change Memory." Nanomaterials 12, no. 12 (2022): 1996. http://dx.doi.org/10.3390/nano12121996.
Der volle Inhalt der QuelleChao, Der-Sheng, Yi-Chan Chen, Fred Chen, et al. "Enhanced Thermal Efficiency in Phase-Change Memory Cell by Double GST Thermally Confined Structure." IEEE Electron Device Letters 28, no. 10 (2007): 871–73. http://dx.doi.org/10.1109/led.2007.906084.
Der volle Inhalt der QuelleAhn, Jun-Ku, Kyoung-Woo Park, Sung-Gi Hur, et al. "Metalorganic chemical vapor deposition of non-GST chalcogenide materials for phase change memory applications." Journal of Materials Chemistry 20, no. 9 (2010): 1751. http://dx.doi.org/10.1039/b922398c.
Der volle Inhalt der QuelleAntolini, Alessio, Eleonora Franchi Scarselli, Antonio Gnudi, et al. "Characterization and Programming Algorithm of Phase Change Memory Cells for Analog In-Memory Computing." Materials 14, no. 7 (2021): 1624. http://dx.doi.org/10.3390/ma14071624.
Der volle Inhalt der QuelleNguyen, Huu Tan, Andrzej Kusiak, Jean Luc Battaglia, et al. "Thermal Properties of In-Sb-Te Thin Films for Phase Change Memory Application." Advances in Science and Technology 95 (October 2014): 113–19. http://dx.doi.org/10.4028/www.scientific.net/ast.95.113.
Der volle Inhalt der QuelleShao, Mingyue, Yang Qiao, Yuan Xue, Sannian Song, Zhitang Song, and Xiaodan Li. "Advantages of Ta-Doped Sb3Te1 Materials for Phase Change Memory Applications." Nanomaterials 13, no. 4 (2023): 633. http://dx.doi.org/10.3390/nano13040633.
Der volle Inhalt der QuelleInoue, Nobuki, and Hisao Nakamura. "Structural transition pathway and bipolar switching of the GeTe–Sb2Te3 superlattice as interfacial phase-change memory." Faraday Discussions 213 (2019): 303–19. http://dx.doi.org/10.1039/c8fd00093j.
Der volle Inhalt der QuelleNoor, Nafisa, Sadid Muneer, Raihan Sayeed Khan, Anna Gorbenko, and Helena Silva. "Amorphized length and variability in phase-change memory line cells." Beilstein Journal of Nanotechnology 11 (October 29, 2020): 1644–54. http://dx.doi.org/10.3762/bjnano.11.147.
Der volle Inhalt der QuelleLi, Tao, Liang Cai Wu, Zhi Tang Song, San Nian Song, Feng Rao, and Bo Liu. "Carbon-Doped Sb-Rich Ge-Sb-Te Phase Change Material for High Speed and High Thermal Stability Phase Change Memory Applications." Materials Science Forum 898 (June 2017): 1834–38. http://dx.doi.org/10.4028/www.scientific.net/msf.898.1834.
Der volle Inhalt der QuelleKim, Myoung Sub, Jin Hyung Jun, Jin Ho Oh, et al. "Electrical Switching Characteristics of Nitrogen Doped Ge2Sb2Te5 Based Phase Change Random Access Memory Cell." Solid State Phenomena 124-126 (June 2007): 21–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.21.
Der volle Inhalt der QuelleChen, Yimin, Nan Han, Fanshuo Kong, et al. "Kinetics features of 2D confined Ge2Sb2Te5 ultrathin film." Applied Physics Letters 121, no. 6 (2022): 061904. http://dx.doi.org/10.1063/5.0100570.
Der volle Inhalt der QuelleOh, Sang Ho, Kyungjoon Baek, Sung Kyu Son, et al. "In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5." Nanoscale Advances 2, no. 9 (2020): 3841–48. http://dx.doi.org/10.1039/d0na00223b.
Der volle Inhalt der QuellePathak, Anushmita, Shivendra Kumar Pandey, and Jitendra Kumar Behera. "Optical band-gap evolution and local structural change in Ge2Sb2Te5 phase change material." Journal of Physics: Conference Series 2426, no. 1 (2023): 012045. http://dx.doi.org/10.1088/1742-6596/2426/1/012045.
Der volle Inhalt der QuelleYoon, Jong Moon, Hu Young Jeong, Sung Hoon Hong, et al. "Large-area, scalable fabrication of conical TiN/GST/TiN nanoarray for low-power phase change memory." J. Mater. Chem. 22, no. 4 (2012): 1347–51. http://dx.doi.org/10.1039/c1jm14190b.
Der volle Inhalt der QuelleHamada, Seiti, Takafumi Horiike, Tomohiro Uno, et al. "Evaluation of GexSbyTez Film Grown by Chemical Vapor Deposition." Materials Science Forum 725 (July 2012): 289–92. http://dx.doi.org/10.4028/www.scientific.net/msf.725.289.
Der volle Inhalt der QuelleFons, Paul James, Dale Brewe, Ed Stern, A. V. Kolobov, and Junji Tominaga. "Understanding Structural Changes in Phase Change Memory Alloys." MRS Proceedings 918 (2006). http://dx.doi.org/10.1557/proc-0918-h04-01.
Der volle Inhalt der QuelleHe, Hanglin, Dhananjeya Kumaar, Kevin Portner, et al. "Inkjet‐Printed Phase Change Memory Devices." Advanced Electronic Materials, June 28, 2024. http://dx.doi.org/10.1002/aelm.202400203.
Der volle Inhalt der QuelleLi, Minghua, Jianming Li, Luping Shi, Hongxin Yang, Tow Chong Chong, and Yi Li. "Crystallization-induced Stress in Phase Change Random Access Memory." MRS Proceedings 1137 (2008). http://dx.doi.org/10.1557/proc-1137-ee05-10.
Der volle Inhalt der QuelleDaoudi, O., E. Nolot, Y. Mazel, et al. "The effects of Sb/Te ratio on crystallization kinetics in Ge-rich GeSbTe phase-change materials." Journal of Applied Physics 136, no. 15 (2024). http://dx.doi.org/10.1063/5.0221206.
Der volle Inhalt der QuelleQi, Ruijuan, Fengrui Sui, Rong Huang, Sannian Song, Xi Li, and Zhitang Song. "Atomic insight into the BEOL thermal budget on phase transition of phase change memory cells." Applied Physics Letters 123, no. 16 (2023). http://dx.doi.org/10.1063/5.0174722.
Der volle Inhalt der QuelleRobertson, John, Ka Xiong, and Paul Peacock. "Electronic and Atomic Structure of Ge2Sb2Te5 phase change memory material." MRS Proceedings 918 (2006). http://dx.doi.org/10.1557/proc-0918-h01-02.
Der volle Inhalt der Quelle