Auswahl der wissenschaftlichen Literatur zum Thema „Photon rockets“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Photon rockets" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Photon rockets"

1

Damour, Thibault. „Photon rockets and gravitational radiation“. Classical and Quantum Gravity 12, Nr. 3 (01.03.1995): 725–37. http://dx.doi.org/10.1088/0264-9381/12/3/011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

PODOLSKÝ, JIŘÍ. „PHOTON ROCKETS MOVING ARBITRARILY IN ANY DIMENSION“. International Journal of Modern Physics D 20, Nr. 03 (März 2011): 335–60. http://dx.doi.org/10.1142/s0218271811018846.

Der volle Inhalt der Quelle
Annotation:
A family of explicit exact solutions of Einstein's equations in four and higher dimensions is studied which describes the gravitational field of an object accelerating due to an anisotropic emission of photons. It is possible to prescribe an arbitrary motion, so that the acceleration of such photon rocket need not be uniform — both its magnitude and direction may vary with time. Except at the location of the rocket the space–times have no curvature singularities, and topological defects like cosmic strings are also absent. Any value of a cosmological constant is allowed. We investigate some particular examples of motion, namely a straight flight and a circular trajectory, and we derive the corresponding radiation patterns and the mass loss of the rockets. We also demonstrate the absence of "gravitational aberration" in such space–times. This interesting member of the higher-dimensional Robinson–Trautman class of pure radiation space–times of algebraic Type D generalizes the class of Kinnersley's solutions that has long been known in four-dimensional general relativity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ge, Huabin, Mingxing Luo, Qiping Su, Ding Wang und Xiao Zhang. „Bondi-Sachs metrics and photon rockets“. General Relativity and Gravitation 43, Nr. 10 (01.06.2011): 2729–42. http://dx.doi.org/10.1007/s10714-011-1197-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dain, Sergio, Osvaldo M. Moreschi und Reinaldo J. Gleiser. „Photon rockets and the Robinson - Trautman geometries“. Classical and Quantum Gravity 13, Nr. 5 (01.05.1996): 1155–60. http://dx.doi.org/10.1088/0264-9381/13/5/026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cornish, F. H. J. „Robinson-Trautman radiating metrics with zero news and photon rockets“. Classical and Quantum Gravity 17, Nr. 18 (05.09.2000): 3945–50. http://dx.doi.org/10.1088/0264-9381/17/18/425.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gallo, Emanuel, und Osvaldo M. Moreschi. „Modeling the dynamics of black holes through balanced equations of motion in the null gauge“. International Journal of Geometric Methods in Modern Physics 16, Nr. 09 (September 2019): 1950131. http://dx.doi.org/10.1142/s0219887819501317.

Der volle Inhalt der Quelle
Annotation:
We develop further the general framework for modeling the dynamics of the motion of black holes, presented in [E. Gallo and O. M. Moreschi, Modeling the dynamics of black holes through balanced equations of motion, Int. J. Geom. Meth. Mod. Phys. 16(3) (2019) 1950034], by employing a convenient null gauge, in general relativity, for the construction of the balanced equations of motion. This null gauge has the property that the asymptotic structure is intimately related to the interior one; in particular there is a strong connection between the field equations and the balanced equations of motion. Our work is very related to what we have called “Robinson–Trautman (RT) geometries” [S. Dain, O. M. Moreschi and R. J. Gleiser, Photon rockets and the Robinson–Trautman geometries, Class. Quantum Grav. 13(5) (1996) 1155–1160] in the past. These geometries are used in the sense of the general framework, we have presented in [E. Gallo and O. M. Moreschi, Modeling the dynamics of black holes through balanced equations of motion, Int. J. Geom. Meth. Mod. Phys. 16(3) (2019) 1950034]. We present the balanced equations of motion in second order of the acceleration. We solve the required components of the field equation at their respective required orders, [Formula: see text] and [Formula: see text], in terms of the gravitational constant. We indicate how this approach can be extended to higher orders.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dariusz Stanisław Sobolewski, Michał Amadeusz Sobolewski, Marek Juliusz Sobolewski, Joanna Paulina Sobolewska und Natalia Julia Sobolewska. „New Generations of Rocket Engines“. JOURNAL OF ADVANCES IN PHYSICS 17 (22.05.2020): 322–46. http://dx.doi.org/10.24297/jap.v17i.8747.

Der volle Inhalt der Quelle
Annotation:
The article, based on mathematical model of the space and particles revealed in "Theory of Space" (Sobolewski D. S., Theory of Space, 2016) (Sobolewski D. S., Theory of Space, 2017) and the description of the propagation of photons stated in publication entitled “Geometry of the Dark Matter and Preliminary Analysis of Alpha and Beta Photons’ Properties Based on Theory of Space” (Sobolewski, Sobolewski i Sobolewski, 2017), describes transverse waves propagating in space, including gravitational, fluctuating and matter waves. In particular, it focuses on waves of matter in which orientation of the spatial channels, connecting four-dimensional boundary hypersurfaces and , had been stabilised. For this type of the wave of matter the minimum energy value for deformation of boundary hypersurfaces of the matter waves has been appointed, which is smaller by several orders of magnitude than energy needed to change the orientation of vertical disturbances of space which connect four-dimensional boundary hypersurfaces and, The obtained results were used to introduce a new classification of rocket engines and to provide examples of their implementation. Furthermore, the article demonstrates first attempts to construct a rocket engine of the new type, including description of the principle of operation of the engine, which is subject of patent application entitled "HTS Photonic Rocket Engine" (Poland Patent nr P.421517, 2017), as well as presents an example of spacecraft shell implementation, which enables stabilization of orientation of its spatial channels. The Article thus reveals new perspectives for interplanetary travel through significant increase in spacecraft velocities, while simultaneously reducing the energy required to achieve them. In addition, the article describes interaction of photons with the boundary hypersurface , while determining the change in photon frequency depending on its curvature .
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bonnor, W. B. „The photon rocket“. Classical and Quantum Gravity 11, Nr. 8 (01.08.1994): 2007–12. http://dx.doi.org/10.1088/0264-9381/11/8/008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bonnor, W. B. „Another photon rocket“. Classical and Quantum Gravity 13, Nr. 2 (01.02.1996): 277–82. http://dx.doi.org/10.1088/0264-9381/13/2/015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Heller, René, Guillem Anglada-Escudé, Michael Hippke und Pierre Kervella. „Low-cost precursor of an interstellar mission“. Astronomy & Astrophysics 641 (September 2020): A45. http://dx.doi.org/10.1051/0004-6361/202038687.

Der volle Inhalt der Quelle
Annotation:
The solar photon pressure provides a viable source of thrust for spacecraft in the solar system. Theoretically it could also enable interstellar missions, but an extremely small mass per cross section area is required to overcome the solar gravity. We identify aerographite, a synthetic carbon-based foam with a density of 0.18 kg m−3 (15 000 times more lightweight than aluminum) as a versatile material for highly efficient propulsion with sunlight. A hollow aerographite sphere with a shell thickness ϵshl = 1 mm could go interstellar upon submission to solar radiation in interplanetary space. Upon launch at 1 AU from the Sun, an aerographite shell with ϵshl = 0.5 mm arrives at the orbit of Mars in 60 d and at Pluto’s orbit in 4.3 yr. Release of an aerographite hollow sphere, whose shell is 1 μm thick, at 0.04 AU (the closest approach of the Parker Solar Probe) results in an escape speed of nearly 6900 km s−1 and 185 yr of travel to the distance of our nearest star, Proxima Centauri. The infrared signature of a meter-sized aerographite sail could be observed with JWST up to 2 AU from the Sun, beyond the orbit of Mars. An aerographite hollow sphere, whose shell is 100 μm thick, of 1 m (5 m) radius weighs 230 mg (5.7 g) and has a 2.2 g (55 g) mass margin to allow interstellar escape. The payload margin is ten times the mass of the spacecraft, whereas the payload on chemical interstellar rockets is typically a thousandth of the weight of the rocket. Using 1 g (10 g) of this margin (e.g., for miniature communication technology with Earth), it would reach the orbit of Pluto 4.7 yr (2.8 yr) after interplanetary launch at 1 AU. Simplistic communication would enable studies of the interplanetary medium and a search for the suspected Planet Nine, and would serve as a precursor mission to α Centauri. We estimate prototype developments costs of 1 million USD, a price of 1000 USD per sail, and a total of < 10 million USD including launch for a piggyback concept with an interplanetary mission.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Photon rockets"

1

Micklewright, Benjamin. „Gravitational radiation and photon rockets“. Thesis, University of York, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Schaefer, Zane Donald. „Ultrafast-time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays“. [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1464382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Photon rockets"

1

Kelly, John. Rock Island Railroad: Photo archive : travel on the Rockets. Hudson, Wis: Iconografix, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Landis, Tony. X-15 photo scrapbook. North Branch, Minn: Specialty, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Foster, Stephen. From Buddy to the Beatles: When the Regent rocked. Ipswich: Old Pond Pub., 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Foster, Stephen. From Buddy to the Beatles: When the Regent rocked. Ipswich: Old Pond Pub., 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kořán, František. SA-6 Gainful in detail: Soviet modern mobile anti-aircraft Launcher 2P25M1/M2/M3 : photo manual for modelers. Prague: RAK, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

White, Cliff. The lens of time: A repeat photography of landscape change in the Canadian Rockies. Calgary, Alta: University of Calgary Press, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

White, Cliff. The lens of time: A repeat photography of landscape change in the Canadian Rockies. Calgary, Alta: University of Calgary Press, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wilson, Elizabeth. Canadian Rockies Photo Album. Altitude Publishing (Canada), 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wilson, Elizabeth. Canadian Rockies Photo Album. Altitude Publishing (Canada), 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Canadian Rockies Photo Album. Altitude Publishing, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Buchteile zum Thema "Photon rockets"

1

Eversberg, Thomas. „Proof II: Rocks, Photos, and Stars“. In The Moon Hoax?, 103–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05460-1_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bailey, Morgan. „Frequent and Reliable Launch for Small Satellites: Rocket Lab’s Electron Launch Vehicle and Photon Spacecraft“. In Handbook of Small Satellites, 1–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-20707-6_91-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bailey, Morgan. „Frequent and Reliable Launch for Small Satellites: Rocket Lab’s Electron Launch Vehicle and Photon Spacecraft“. In Handbook of Small Satellites, 453–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36308-6_91.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

„Photon“. In Between the Rocks and the Stars, 163–68. Vanderbilt University Press, 2020. http://dx.doi.org/10.2307/j.ctv16755bk.27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

„Photo Credits“. In Rocks and Rock Formations, 186. Princeton University Press, 2021. http://dx.doi.org/10.2307/j.ctv1cmsmv4.21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

„Photo Credits“. In Rocks and Rock Formations, 186. Princeton University Press, 2021. http://dx.doi.org/10.1515/9780691217550-019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Searle, Mike. „Mapping the Geology of Everest and Makalu“. In Colliding Continents. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199653003.003.0013.

Der volle Inhalt der Quelle
Annotation:
There are few places in the world where a geologist can actually take a look at the rocks and structures 5 or 6 kilometres down beneath the Earth’s surface. The opposing forces of nature—the uplift of rocks towards the Earth’s surface and their erosion and removal—usually balance each other out, at least roughly. It is only where the rate of uplift of rocks greatly exceeds erosion that high mountains are built. This is precisely why the Himalaya are so unique to geologists studying mountain-building processes. The Himalaya is an active mountain range: the plate convergence rates are high, uplift rates are extremely high, and glacial and fluvial erosion has carved deep channels in between the mountains. By walking and climbing all around Everest we can actually map and study the rocks in three dimensions, which elsewhere, beneath the Tibetan Plateau for example, remain buried below the Earth’s surface. After the Survey of India discovered that Mount Everest was the highest mountain in the world, a pioneering expedition set out to fly across the summit and take photographs. On 3 April 1933 a Houston-Weston biplane piloted by Lord Clydesdale flew across the summit and took the first photos of the mountain. Clydesdale wrote: ‘We were in a serious position. The great bulk of Everest was towering above us to the left, Makalu down-wind to the right and the connecting range dead ahead, with a hurricane wind doing its best to carry us over and dash us on the knife-edge side of Makalu.’ The earliest geologists to study the structure of Mount Everest, A. M. Heron and Noel Odell, both noted the apparent conformity of strata with sedimentary rocks on top of the mountain lying above the more metamorphosed rocks around the base In his 1965 paper on the structure of Everest, Lawrence Wager wrote: ‘It never ceases to surprise the writer that the highest point of the Earth’s surface is composed of sedimentary rocks which are relatively flat-lying and but little metamorphosed.’
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

King, Edward. „Photography as Anthropotechnique and the Legacy of Canudos“. In Latin American Culture and the Limits of the Human, 256–78. University Press of Florida, 2020. http://dx.doi.org/10.5744/florida/9781683401490.003.0011.

Der volle Inhalt der Quelle
Annotation:
This chapter explores the ways in which Flávio de Barros’s photographic documentation of the war in Canudos (1896–1897) has become a conceptual prism through which to consider the role of photography in both the maintenance and contestation of biopolitical control in Brazil. The photobook Desterro (2014), a creative archive of a “fictional ethnographic” expedition to the site of the war led by artist Ícaro Lira, sets up a dialogue with De Barros’s photographs and their role in the violent foundations of the Brazilian Republic at the end of the nineteenth century. By incorporating these photographs into an assemblage of texts, objects, and images that includes narrative, photographs of the desert landscape surrounding Canudos as well as rocks gathered during the expedition, Desterro shifts the focus from photography as a biopolitical technology to its role in the displacement of anthropocentrism in favor of a perspective that privileges the human’s constitutive entanglements with the nonhuman. As well as an engagement with the legacy of De Barros’s photography, Desterro is also a meditation on the artist’s book itself, a form that draws on a number of photo-textual traditions (including ethnographic photography and traveller-artists’ books), in order to intervene into changing conceptions of the human.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Photon rockets"

1

Meyer, Terrence, Zane Schaefer, Joseph Fuller, Sukesh Roy, Stephen Danczyk und James Gord. „Time-Gated Ballistic-Photon Imaging of Rocket Sprays“. In 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tang, Zhongkan, Rakhitha Chandrasekara, Yue Chuan Tan, Cliff Cheng, Kadir Durak und Alexander Ling. „The compact photon pair source that survived a rocket explosion“. In SPIE Optical Engineering + Applications, herausgegeben von Ronald E. Meyers, Yanhua Shih und Keith S. Deacon. SPIE, 2016. http://dx.doi.org/10.1117/12.2235572.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bolonkin, Alexander. „Converting of Matter to Energy by AB-Generator and Photon Rocket“. In 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-5342.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kassu, Aschalew, Carlton Farley, Jonathan Mills, Sandra Sadate-Moualeu, Michael Curley, Paul Ruffin, Anup Sharma, Jeremy Rice und Christopher Marshall. „Raman detection of MNA in solid rocket fuels“. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XII, herausgegeben von Shizhuo Yin und Ruyan Guo. SPIE, 2018. http://dx.doi.org/10.1117/12.2321356.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Biskach, Michael, Timo Saha, William Zhang, James Mazzarella, Ryan McClelland, Jason Niemeyer, Mark Schofield und Kai Chan. „Mirror Integration Process for High Precision, Lightweight X-Ray Optics“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47893.

Der volle Inhalt der Quelle
Annotation:
Next generation X-ray telescopes in the coming decades require optics with high angular resolution and large collecting area at a fixed cost and budget. X-ray optics, unlike traditional normal incidence optics in optical and infrared telescopes, require many times the polished surface area to obtain an equivalent collecting area due to the nature of glancing incidence optics necessary to reflect higher energy X-ray photons. The Next Generation X-ray Optics (NGXO) group at NASA Goddard Space Flight Center (GSFC) is developing a manufacturing process capable of producing sub 5 arc-second half-power diameter (HPD) angular resolution optics in the near term, with the long term goal of producing optics for an X-ray telescope in the next 10 years with sub 1 arc-second HPD angular resolution. By parallelizing the production, integration, and testing of X-ray mirrors in separate modules, thousands of precisely formed X-ray mirror segments are assembled into one Mirror Assembly (MA), lowering the cost per collecting area by orders of magnitude compared to previous X-ray telescopes with similar resolution like the Chandra X-ray Observatory. Novel uses of kinematic mounts, precision actuators, and epoxy fixes each X-ray mirror segment to the submicron level with the sufficient strength to survive rocket launch.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kassu, Aschalew, Jonathan A. Mills, Carlton W. Farley, Michael Curley, Anup Sharma, Christopher A. Marshall, Jeremy Rice, Brian A. McDonald und Paul B. Ruffin. „Raman monitoring and evaluation of the aging effects of rocket propellant stabilizers“. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XI, herausgegeben von Shizhuo Yin und Ruyan Guo. SPIE, 2017. http://dx.doi.org/10.1117/12.2274931.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Farley, Carlton, Aschalew Kassu, Jonathan Mills, Paul Ruffin, Michael Curley, Sandra Sadate-Moualeu, James Parker et al. „Raman spectroscopic analysis of model solid rocket propellant for the detection of stabilizer decay“. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XIV, herausgegeben von Shizhuo Yin und Ruyan Guo. SPIE, 2020. http://dx.doi.org/10.1117/12.2568206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Farley, Carlton W., Paul Ruffin, Jonathan Mills, Sandra Sadate-Moualeu, Michael Curley, James Parker, Aschalew Kassu et al. „Dual wavelength Raman spectroscopic analysis of solid rocket propellant for the detection of stabilizer decay (Conference Presentation)“. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XIII, herausgegeben von Shizhuo Yin und Ruyan Guo. SPIE, 2019. http://dx.doi.org/10.1117/12.2530025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Seleznev, I. A., D. O. Makienko, V. V. Abashkin, A. A. Chertova und A. F. Samokhvalov. „The paper describes methods of studying the texture properties of rocks from photographs of a whole core using variograms and matrices of co-occurrence. The practical goal of our research is to obtain curves based on images of rocks; for example, core photographs, microresistivity formation images (FMI), and X-ray computerized tomography (CT), which make it possible to segment images depending on the difference of textural characteristics of different areas of the image. Such texture attributes—separately or along with color information—can be used in the tasks of automatic lithotyping, as well as in modeling the petrophysical properties of rocks. Our practical experience in building predictive models from core photographs has shown that the use of versatile information improves the quality of modeling. In some cases, the classification of lithotypes and the prediction of reservoir properties is difficult and leads to erroneous results if we do not use all the available information. In practice, UV images of the core are not always available. There are also daylight core photos, when the color characteristics are not very informative. In such cases, including imaging types such as X-ray CT, texture attributes can be of great help in predictive model building“. In Geomodel 2021. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202157117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie