Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Photon-upconversion nanoparticles.

Zeitschriftenartikel zum Thema „Photon-upconversion nanoparticles“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-44 Zeitschriftenartikel für die Forschung zum Thema "Photon-upconversion nanoparticles" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Chen, Xian, Denfeng Peng, Qiang Ju, and Feng Wang. "Photon upconversion in core–shell nanoparticles." Chemical Society Reviews 44, no. 6 (2015): 1318–30. http://dx.doi.org/10.1039/c4cs00151f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lee, Eunsang, Minhyuk Jung, Youngeun Han, et al. "Stochastic Photon Emission from Nonblinking Upconversion Nanoparticles." Journal of Physical Chemistry C 121, no. 38 (2017): 21073–79. http://dx.doi.org/10.1021/acs.jpcc.7b08509.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Qu, Zuoming, Pengfei Duan, Jin Zhou, Yafei Wang, and Minghua Liu. "Photon upconversion in organic nanoparticles and subsequent amplification by plasmonic silver nanowires." Nanoscale 10, no. 3 (2018): 985–91. http://dx.doi.org/10.1039/c7nr07340b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Liu, Wen, Runze Chen, and Sailing He. "Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity." Journal of Innovative Optical Health Sciences 12, no. 03 (2019): 1950013. http://dx.doi.org/10.1142/s1793545819500135.

Der volle Inhalt der Quelle
Annotation:
Two-photon luminescence with near-infrared (NIR) excitation of upconversion nanoparticles (NPs) is of great importance in biological imaging due to deep penetration in high-scattering tissues, low auto-luminescence and good sectioning ability. Unfortunately, common two-photon luminescence is in visible band with an extremely high exciation power density, which limits its application. Here, we synthesized NaYF4:Yb[Formula: see text]Tm@NaYF4 upconversion NPs with strong two-photon NIR emission and a low excitation power density. Furthermore, NaYF4:Yb[Formula: see text]Tm@NaYF4@SiO2@OTMS@F127 NPs with high chemical stability were obtained by a modified multilayer coating method which was applied to upconversion NPs for the first time. In addition, it is shown that the as-prepared hydrophillic upconversion NPs have great biocompatibility and kept stable for 6 hours during in vivo whole-body imaging. The vessels with two-photon luminescence were clear even under an excitation power density as low as 25[Formula: see text]mW[Formula: see text]cm2. Vivid visualizations of capillaries and vessels in a mouse brain were also obtained with low background and high contrast. Because of cheaper instruments and safer power density, the NIR two-photon luminescence of NaYF4:Yb[Formula: see text]Tm@NaYF4 upconversion NPs could promote wider application of two-photon technology. The modified multilayer coating method could be widely used for upconversion NPs to increase the stable time of the in vivo circulation. Our work possesses a great potential for deep imaging and imaging-guided treatment in the future.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shuai Ye, Shuai Ye, Jun Song Jun Song, Dong Wang Dong Wang, Yuliang Tian Yuliang Tian, Junle Qu Junle Qu, and and Hanben Niu and Hanben Niu. "Reduced photon quenching in Ce-doped NaYF4:Yb/Ho upconversion nanoparticles with core/shell structure." Chinese Optics Letters 14, no. 2 (2016): 021601–21605. http://dx.doi.org/10.3788/col201614.021601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chen, Xian, Denfeng Peng, Qiang Ju, and Feng Wang. "ChemInform Abstract: Photon Upconversion in Core-Shell Nanoparticles." ChemInform 46, no. 21 (2015): no. http://dx.doi.org/10.1002/chin.201521300.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Poláchová, Veronika, Matěj Pastucha, Zuzana Mikušová, et al. "Click-conjugated photon-upconversion nanoparticles in an immunoassay for honeybee pathogen Melissococcus plutonius." Nanoscale 11, no. 17 (2019): 8343–51. http://dx.doi.org/10.1039/c9nr01246j.

Der volle Inhalt der Quelle
Annotation:
A method for the conjugation of photon-upconversion nanoparticles with streptavidin via copper-free click-chemistry was introduced, and the prepared label was applied in an immunoassay for European foulbrood diagnosis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gao, Zhao, Lulu Shi, Xiao Ling, Ze Chen, Qingsong Mei, and Feng Wang. "Near-infrared photon-excited energy transfer in platinum(ii)-based supramolecular polymers assisted by upconverting nanoparticles." Chemical Communications 57, no. 15 (2021): 1927–30. http://dx.doi.org/10.1039/d0cc07445d.

Der volle Inhalt der Quelle
Annotation:
A hybrid supramolecular system with near-infrared photon-excited energy transfer has been successfully constructed, relying on the assistance of upconversion nanoparticles in platinum(ii)-based supramolecular polymers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dong, Hao, Ling-Dong Sun, Ye-Fu Wang, et al. "Photon upconversion in Yb3+–Tb3+ and Yb3+–Eu3+ activated core/shell nanoparticles with dual-band excitation." Journal of Materials Chemistry C 4, no. 19 (2016): 4186–92. http://dx.doi.org/10.1039/c6tc00413j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Huang, Ying-Ying, Sulbha K. Sharma, Tianhong Dai, et al. "Can nanotechnology potentiate photodynamic therapy?" Nanotechnology Reviews 1, no. 2 (2012): 111–46. http://dx.doi.org/10.1515/ntrev-2011-0005.

Der volle Inhalt der Quelle
Annotation:
AbstractPhotodynamic therapy (PDT) uses the combination of nontoxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposomes, lipoplexes, nanoemulsions, micelles, polymer nanoparticles (degradable and nondegradable), and silica nanoparticles. In some cases (fullerenes and quantum dots), the actual nanoparticle itself is the PS. Targeting ligands such as antibodies and peptides can be used to increase specificity. Gold and silver nanoparticles can provide plasmonic enhancement of PDT. Two-photon excitation or optical upconversion can be used instead of one-photon excitation to increase tissue penetration at longer wavelengths. Finally, after sections on in vivo studies and nanotoxicology, we attempt to answer the title question, “can nanotechnology potentiate PDT?”
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Farka, Zdeněk, Matthias J. Mickert, Zuzana Mikušová, et al. "Surface design of photon-upconversion nanoparticles for high-contrast immunocytochemistry." Nanoscale 12, no. 15 (2020): 8303–13. http://dx.doi.org/10.1039/c9nr10568a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Huang, Ling, Eugenia Kakadiaris, Tereza Vaneckova, Kai Huang, Marketa Vaculovicova, and Gang Han. "Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles." Biomaterials 201 (May 2019): 77–86. http://dx.doi.org/10.1016/j.biomaterials.2019.02.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Guo, Shaohong, Xiaoji Xie, Ling Huang, and Wei Huang. "Sensitive Water Probing through Nonlinear Photon Upconversion of Lanthanide-Doped Nanoparticles." ACS Applied Materials & Interfaces 8, no. 1 (2015): 847–53. http://dx.doi.org/10.1021/acsami.5b10192.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Xie, Xiaoji, Nengyue Gao, Renren Deng, Qiang Sun, Qing-Hua Xu, and Xiaogang Liu. "Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core–Shell Nanoparticles." Journal of the American Chemical Society 135, no. 34 (2013): 12608–11. http://dx.doi.org/10.1021/ja4075002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Gorris, Hans H., and Ute Resch-Genger. "Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications." Analytical and Bioanalytical Chemistry 409, no. 25 (2017): 5875–90. http://dx.doi.org/10.1007/s00216-017-0482-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ju, Xiuhao, Jialei Song, Jianlei Han, Yonghong Shi, Yuan Gao, and Pengfei Duan. "Photofluorochromic water-dispersible nanoparticles for single-photon-absorption upconversion cell imaging." Nanotechnology 32, no. 47 (2021): 475606. http://dx.doi.org/10.1088/1361-6528/ac137f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Mahata, Manoj Kumar, Ranjit De, and Kang Taek Lee. "Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications." Biomedicines 9, no. 7 (2021): 756. http://dx.doi.org/10.3390/biomedicines9070756.

Der volle Inhalt der Quelle
Annotation:
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Peng, Tingting, Rui Pu, Baoju Wang, et al. "The Spectroscopic Properties and Microscopic Imaging of Thulium-Doped Upconversion Nanoparticles Excited at Different NIR-II Light." Biosensors 11, no. 5 (2021): 148. http://dx.doi.org/10.3390/bios11050148.

Der volle Inhalt der Quelle
Annotation:
Lanthanide-doped upconversion nanoparticles (UCNPs) are promising bioimaging nanoprobes due to their excellent photostability. As one of the most commonly used lanthanide activators, Tm3+ ions have perfect ladder-type electron configuration and can be directly excited by bio-friendly near-infrared-II (NIR-II) wavelengths. Here, the emission characteristics of Tm3+-doped nanoparticles under laser excitations of different near-infrared-II wavelengths were systematically investigated. The 1064 nm, 1150 nm, and 1208 nm lasers are proposed to be three excitation strategies with different response spectra of Tm3+ ions. In particular, we found that 1150 nm laser excitation enables intense three-photon 475 nm emission, which is nearly 100 times stronger than that excited by 1064 nm excitation. We further optimized the luminescence brightness after investigating the luminescence quenching mechanism of bare NaYF4: Tm (1.75%) core. After growing an inert shell, a ten-fold increase of emission intensity was achieved. Combining the advantages of NIR-II wavelength and the higher-order nonlinear excitation, a promising facile excitation strategy was developed for the application of thulium-doped upconversion nanoparticles in nanoparticles imaging and cancer cell microscopic imaging.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Prieto, Martin, Alina Y. Rwei, Teresa Alejo, et al. "Light-Emitting Photon-Upconversion Nanoparticles in the Generation of Transdermal Reactive-Oxygen Species." ACS Applied Materials & Interfaces 9, no. 48 (2017): 41737–47. http://dx.doi.org/10.1021/acsami.7b14812.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

da Silva, Jefferson F., Rodrigo F. da Silva, Emanuel P. Santos, Lauro J. Q. Maia, and André L. Moura. "Photon-avalanche-like upconversion in NdAl3(BO3)4 nanoparticles excited at 1064 nm." Applied Physics Letters 117, no. 15 (2020): 151102. http://dx.doi.org/10.1063/5.0024619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Chen, Kun, Wenhong Su, Yue Wang, et al. "Nanocomposites of carbon nanotubes and photon upconversion nanoparticles for enhanced optical limiting performance." Journal of Materials Chemistry C 6, no. 27 (2018): 7311–16. http://dx.doi.org/10.1039/c8tc01576g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Yang, Bingxiao, Yangbo Wang, Tian Wei, et al. "Solution-Processable Near-Infrared-Responsive Composite of Perovskite Nanowires and Photon-Upconversion Nanoparticles." Advanced Functional Materials 28, no. 31 (2018): 1801782. http://dx.doi.org/10.1002/adfm.201801782.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Chen, Xiaohu, Zhengyu Gui, Yong Liang, et al. "Characterizing the luminescent properties of upconversion nanoparticles in single and densely packed state." Journal of Innovative Optical Health Sciences 12, no. 01 (2019): 1841004. http://dx.doi.org/10.1142/s1793545818410043.

Der volle Inhalt der Quelle
Annotation:
Luminescent properties of Er[Formula: see text]- and Yb[Formula: see text]- co-doped CaF2 upconversion nanoparticles (UCNPs) were investigated in single particle and densely-packed states with a custom-built microscope. The single UCNPs exhibit linear dependency of luminescent intensity on excitation power while the densely-packed UCNPs exhibit a 2-order power law-dependency indicating a two-photon absorption process. Time-domain luminescence intensity measurements were performed and the curves were fitted to excitation[Formula: see text]emission rate functions based on a simplified three-state model. The results indicate that the intermediates in single particles are much less and saturated in a short time, and there are strong couplings of the ground states and intermediate states between neighboring UCNPs in densely packed UCNPs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wickerts, Sanna, Rickard Arvidsson, Björn A. Sandén, Gregory Peters, Lili Hou, and Bo Albinsson. "Prospective Life-Cycle Modeling of Quantum Dot Nanoparticles for Use in Photon Upconversion Devices." ACS Sustainable Chemistry & Engineering 9, no. 14 (2021): 5187–95. http://dx.doi.org/10.1021/acssuschemeng.1c00376.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Hlaváček, Antonín, Matthias J. Mickert, Tero Soukka, et al. "Large-Scale Purification of Photon-Upconversion Nanoparticles by Gel Electrophoresis for Analogue and Digital Bioassays." Analytical Chemistry 91, no. 2 (2018): 1241–46. http://dx.doi.org/10.1021/acs.analchem.8b04488.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Yonemura, Hiroaki, Yuji Naka, Ryuji Matsumoto, and Sunao Yamada. "Effects of Silver and Gold Nanoparticles on Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation." Transactions of the Materials Research Society of Japan 40, no. 3 (2015): 195–201. http://dx.doi.org/10.14723/tmrsj.40.195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Perego, Jacopo, Jacopo Pedrini, Charl X. Bezuidenhout, et al. "Engineering Porous Emitting Framework Nanoparticles with Integrated Sensitizers for Low‐Power Photon Upconversion by Triplet Fusion." Advanced Materials 31, no. 40 (2019): 1903309. http://dx.doi.org/10.1002/adma.201903309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Gee, William J. "Recent Trends Concerning Upconversion Nanoparticles and Near-IR Emissive Lanthanide Materials in the Context of Forensic Applications." Australian Journal of Chemistry 72, no. 3 (2019): 164. http://dx.doi.org/10.1071/ch18502.

Der volle Inhalt der Quelle
Annotation:
Upconversion nanoparticles (UCNPs) are materials that, upon absorbing multiple photons of low energy (e.g. infrared radiation), subsequently emit a single photon of higher energy, typically within the visible spectrum. The physics of these materials have been the subject of detailed investigations driven by the potential application of these materials as medical imaging devices. One largely overlooked application of UCNPs is forensic science, wherein the ability to produce visible light from infrared light sources would result in a new generation of fingerprint powders that circumvent background interference which can be encountered with visible and ultraviolet light sources. Using lower energy, infrared radiation would simultaneously improve the safety of forensic practitioners who often employ light sources in less than ideal locations. This review article covers the development of UCNPs, the use of infrared radiation to visualise fingerprints by the forensic sciences, and the potential benefits of applying UCNP materials over current approaches.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Resch-Genger, Ute, and Hans H. Gorris. "Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies." Analytical and Bioanalytical Chemistry 409, no. 25 (2017): 5855–74. http://dx.doi.org/10.1007/s00216-017-0499-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Modlitbová, Pavlína, Antonín Hlaváček, Tereza Švestková, et al. "The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: Bioaccumulation, imaging, and spectroscopic studies." Chemosphere 225 (June 2019): 723–34. http://dx.doi.org/10.1016/j.chemosphere.2019.03.074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Zhong, Yeteng, Gan Tian, Zhanjun Gu, et al. "Luminescent Nanoparticles: Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenching-Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd3+ -Sensitized Nanoparticles (Adv. Mater. 18/2014)." Advanced Materials 26, no. 18 (2014): 2766. http://dx.doi.org/10.1002/adma.201470117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Zhong, Yeteng, Gan Tian, Zhanjun Gu, et al. "Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenching-Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles." Advanced Materials 26, no. 18 (2013): 2831–37. http://dx.doi.org/10.1002/adma.201304903.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Modlitbová, Pavlína, Sára Střítežská, Antonín Hlaváček, David Prochazka, Pavel Pořízka, and Jozef Kaiser. "Laser-induced breakdown spectroscopy as a straightforward bioimaging tool for plant biologists; the case study for assessment of photon-upconversion nanoparticles in Brassica oleracea L. plant." Ecotoxicology and Environmental Safety 214 (May 2021): 112113. http://dx.doi.org/10.1016/j.ecoenv.2021.112113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Wang, Jiaying, Haiying Wang, Sijin Zuo, et al. "Synergistic effects of lanthanide surface adhesion and photon-upconversion for enhanced near-infrared responsive photodegradation of organic contaminants in wastewater." Environmental Science: Nano 7, no. 11 (2020): 3333–42. http://dx.doi.org/10.1039/d0en00670j.

Der volle Inhalt der Quelle
Annotation:
Upconversion nanoparticle-TiO<sub>2</sub> catalyst with Gd<sup>3+</sup>-rich surface shows stronger binding coefficiency to the carboxyl groups, resulting in faster ring cleavage and higher mineralization efficiency of rhodamine B under NIR light irradiation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Yonemura, Hiroaki, Yuji Naka, Mitsuhiro Nishino, Hiroshi Sakaguchi, and Sunao Yamada. "Effect of gold nanoparticle on photon upconversion based on sensitized triplet–triplet annihilation in polymer films." Molecular Crystals and Liquid Crystals 654, no. 1 (2017): 196–200. http://dx.doi.org/10.1080/15421406.2017.1358044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Martínez, Eduardo D., ALI FRANCISCO GARCIA FLORES, Albano Carneiro Neto, et al. "Controlling the Thermal Switching in Upconverting Nanoparticles Through Surface Chemistry." Nanoscale, 2021. http://dx.doi.org/10.1039/d1nr03223b.

Der volle Inhalt der Quelle
Annotation:
Photon upconversion taking place in small rare-earth-doped nanoparticles has been recently observed to be thermally modulated in an anomalous manner, showing thermal enhancement of the emission intensity. This effect was...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Su, Qianqian, Han-Lin Wei, Yachong Liu, et al. "Six-photon upconverted excitation energy lock-in for ultraviolet-C enhancement." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-24664-x.

Der volle Inhalt der Quelle
Annotation:
AbstractPhoton upconversion of near-infrared (NIR) irradiation into ultraviolet-C (UVC) emission offers many exciting opportunities for drug release in deep tissues, photodynamic therapy, solid-state lasing, energy storage, and photocatalysis. However, NIR-to-UVC upconversion remains a daunting challenge due to low quantum efficiency. Here, we report an unusual six-photon upconversion process in Gd3+/Tm3+-codoped nanoparticles following a heterogeneous core-multishell architecture. This design efficiently suppresses energy consumption induced by interior energy traps, maximizes cascade sensitizations of the NIR excitation, and promotes upconverted UVC emission from high-lying excited states. We realized the intense six-photon-upconverted UV emissions at 253 nm under 808 nm excitation. This work provides insight into mechanistic understanding of the upconversion process within the heterogeneous architecture, while offering exciting opportunities for developing nanoscale UVC emitters that can be remotely controlled through deep tissues upon NIR illumination.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Chen, Chaohao, Fan Wang, Shihui Wen, et al. "Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles." Nature Communications 9, no. 1 (2018). http://dx.doi.org/10.1038/s41467-018-05842-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Kostiv, Uliana, Jan Kučka, Volodymyr Lobaz, et al. "Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes." Scientific Reports 10, no. 1 (2020). http://dx.doi.org/10.1038/s41598-020-77112-z.

Der volle Inhalt der Quelle
Annotation:
Abstract“All-in-one” multifunctional nanomaterials, which can be visualized simultaneously by several imaging techniques, are required for the efficient diagnosis and treatment of many serious diseases. This report addresses the design and synthesis of upconversion magnetic NaGdF4:Yb3+/Er3+(Tm3+) nanoparticles by an oleic acid-stabilized high-temperature coprecipitation of lanthanide precursors in octadec-1-ene. The nanoparticles, which emit visible or UV light under near-infrared (NIR) irradiation, were modified by in-house synthesized PEG-neridronate to facilitate their dispersibility and colloidal stability in water and bioanalytically relevant phosphate buffered saline (PBS). The cytotoxicity of the nanoparticles was determined using HeLa cells and human fibroblasts (HF). Subsequently, the particles were modified by Bolton-Hunter-neridronate and radiolabeled by 125I to monitor their biodistribution in mice using single-photon emission computed tomography (SPECT). The upconversion and the paramagnetic properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles were evaluated by photoluminescence, magnetic resonance (MR) relaxometry, and magnetic resonance imaging (MRI) with 1 T and 4.7 T preclinical scanners. MRI data were obtained on phantoms with different particle concentrations and during pilot long-time in vivo observations of a mouse model. The biological and physicochemical properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles make them promising as a trimodal optical/MRI/SPECT bioimaging and theranostic nanoprobe for experimental medicine.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Brandmeier, Julian C., Kirsti Raiko, Zdeněk Farka, et al. "Effect of Particle Size and Surface Chemistry of Photon‐Upconversion Nanoparticles on Analog and Digital Immunoassays for Cardiac Troponin." Advanced Healthcare Materials, July 15, 2021, 2100506. http://dx.doi.org/10.1002/adhm.202100506.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

de Oliveira Lima, Karmel, Luiz Fernando dos Santos, Rodrigo Galvão, Antonio Claudio Tedesco, Leonardo de Souza Menezes, and Rogéria Rocha Gonçalves. "Single Er3+, Yb3+: KGd3F10 Nanoparticles for Nanothermometry." Frontiers in Chemistry 9 (July 21, 2021). http://dx.doi.org/10.3389/fchem.2021.712659.

Der volle Inhalt der Quelle
Annotation:
Among several optical non-contact thermometry methods, luminescence thermometry is the most versatile approach. Lanthanide-based luminescence nanothermometers may exploit not only downshifting, but also upconversion (UC) mechanisms. UC-based nanothermometers are interesting for biological applications: they efficiently convert near-infrared radiation to visible light, allowing local temperatures to be determined through spectroscopic investigation. Here, we have synthesized highly crystalline Er3+, Yb3+ co-doped upconverting KGd3F10 nanoparticles (NPs) by the EDTA-assisted hydrothermal method. We characterized the structure and morphology of the obtained NPs by transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and dynamic light scattering. Nonlinear spectroscopic studies with the Er3+, Yb3+: KGd3F10 powder showed intense green and red emissions under excitation at 980 and 1,550 nm. Two- and three-photon processes were attributed to the UC mechanisms under excitation at 980 and 1,550 nm. Strong NIR emission centered at 1,530 nm occurred under low 980-nm power densities. Single NPs presented strong green and red emissions under continuous wave excitation at 975.5 nm, so we evaluated their use as primary nanothermometers by employing the Luminescence Intensity Ratio technique. We determined the temperature felt by the dried NPs by integrating the intensity ratio between the thermally coupled 2H11/2→4I15/2 and 4S3/2→4I15/2 levels of Er3+ ions in the colloidal phase and at the single NP level. The best thermal sensitivity of a single Er3+, Yb3+: KGd3F10 NP was 1.17% at the single NP level for the dry state at 300 K, indicating potential application of this material as accurate nanothermometer in the thermal range of biological interest. To the best of our knowledge, this is the first promising thermometry based on single KGd3F10 particles, with potential use as biomarkers in the NIR-II region.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

"Light-Responsive Porous Aromatic Frameworks: Generation of Photon Upconverted Emission and Modulation of Porosity by Bulk Photoisomerization." Proceedings International 2, no. 2 (2020): 36–37. http://dx.doi.org/10.33263/proceedings22.036037.

Der volle Inhalt der Quelle
Annotation:
Porous aromatic frameworks (PAFs) were engineered to generate solid-state upconverting materials that emit higher energy photons under a suitable light stimulus [1]. Fluorescent PAFs were generated by the inclusion of diphenylanthracene moieties in a low-density 3D porous frameworks that maintained the optical properties of the emitting chromophores in the solid-state. Upon inclusion of a suitable sensitizer (a metallo-porphyrin) inside the nanometer-sized pores, the copolymer displayed sensitized photon upconversion with a quantum yield as high as 15%, a record value for solid-state materials. Moreover, it was possible to tether the sensitizer to the porous matrix through a stable covalent bond, generating self-standing upconverting nanoparticles that can be possibly applied in photovoltaics and bio-imaging. PAFs can also be engineered as light-responsive materials. The co-polymerization of a photoswitch with tetraphenylmethane generated porous networks that provided the free volume for the photoisomerization of the overcrowded alkene [2]. Under UV light irradiation, the quantitative photoisomerization led to structural changes and modulated the CO2 adsorptive properties of the material. The process is reversible by irradiation or heating leading to a cyclable material.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Han, Sanyang, Zhigao Yi, Jiangbin Zhang, et al. "Photon upconversion through triplet exciton-mediated energy relay." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-23967-3.

Der volle Inhalt der Quelle
Annotation:
AbstractExploration of upconversion luminescence from lanthanide emitters through energy migration has profound implications for fundamental research and technology development. However, energy migration-mediated upconversion requires stringent experimental conditions, such as high power excitation and special migratory ions in the host lattice, imposing selection constraints on lanthanide emitters. Here we demonstrate photon upconversion of diverse lanthanide emitters by harnessing triplet exciton-mediated energy relay. Compared with gadolinium-based systems, this energy relay is less dependent on excitation power and enhances the emission intensity of Tb3+ by 158-fold. Mechanistic investigations reveal that emission enhancement is attributable to strong coupling between lanthanides and surface molecules, which enables fast triplet generation (&lt;100 ps) and subsequent near-unity triplet transfer efficiency from surface ligands to lanthanides. Moreover, the energy relay approach supports long-distance energy transfer and allows upconversion modulation in microstructures. These findings enhance fundamental understanding of energy transfer at molecule-nanoparticle interfaces and open exciting avenues for developing hybrid, high-performance optical materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Alexandrov, Alexander A., Mariya N. Mayakova, Valery V. Voronov та ін. "Синтез ап-конверсионных люминофоров на основе фторида кальция". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, № 1 (2020). http://dx.doi.org/10.17308/kcmf.2020.22/2524.

Der volle Inhalt der Quelle
Annotation:
Исследование посвящено созданию люминофора на основе фторида кальция, легированного редкоземельными элементами: 5% Yb, 1% Er, с использованием методики синтеза из раствора в расплаве. В качестве растворителя использован нитрат натрия NaNO3, в качестве фторирующего агента – фторид натрия NaF. Полученные образцы охарактеризованы методами рентгенофазового анализа, рентгеноспектрального микроанализа, растровой электронной микроскопии и люминесцентной спектроскопии.В ходе работы исследовано влияние параметров синтеза на фазовый состав и морфологию частиц. Было установлено, что для формирования однофазных образцов – твёрдых растворов на основе фторида кальция – необходимо проводить синтез при температуре не ниже 400 °C, оптимальное время выдержки составило 3 ч. Установлен состав полученных образцов, он отличается от номинального и может быть записан как Ca0.88(Yb, Er)0.06Na0.06F2. Показано, что совместное вхождение натрия и ионов редкоземельных элементов повышает границы растворимости фториданатрия во фториде кальция. Энергетический выход люминесценции составил 1.21 %.По результатам работы был получен новый материал, обладающий ап-конверсионными свойствами.&#x0D; &#x0D; &#x0D; &#x0D; &#x0D; ЛИТЕРАТУРА&#x0D; &#x0D; Овсянкин В.В., Феофилов П.П. О механизме суммирования электронных возбуждений в акти-вированных кристаллах. Письма в ЖЭТФ. 1966;3(12):494–497. Режим доступа: http://www.jetpletters.ac.ru/ps/782/article_12079.pdf&#x0D; Auzel F. Compteur quantique par transfert d’energie entre deux ions de terres rares dans un tungstate mixte et dans un verre. C. R. Acad. Sci. B. 1966;262: 1016–1019.&#x0D; Fedorov P. P., Kuznetsov S. V., Osiko V. V. Elaboration of nanofl uorides and ceramics for optical and laser applications. In: Tressaud A., Poeppelmeier K. (eds.) Photonic and electronic properties of fl uoride materials: Progress in fl uorine science series. Amsterdam: Elsevier; 2016. p. 7–31. DOI: http://doi.org/10.1016/B978-0-12-801639-8.00002-7&#x0D; Kostiv U., Rajsiglova L., Luptakova D., Pluhacek T., Vannucci L., Havlicek V., Engstova H., Jirak D., Slouf M., Makovicky P., Sedlacek R., Horak D. Biodistribution of upconversion/magnetic silica-coated NaGdF4:Yb3+/Er3+ nanoparticles in mouse models. RSC Adv. 2017;7: 45997–46006. DOI: https://doi.org/10.1039/c7ra08712h&#x0D; Zhao J., Zhu Y.-J., Chen F. Microwave-assisted solvothermal synthesis and upconversion luminescence of CaF2:Yb3+/Er3+ nanocrystals. J. Colloid Interface Sci. 2015;440: 39–45. DOI: http://doi.org/10.1016/j.jcis.2014.10.031&#x0D; Rakov N., Maciel G. S., Xiao M. Upconversion fl uorescence and its thermometric sensitivity of Er3+: Yb3+ co-doped SrF2 powders prepared by combustion synthesis. Electron. Mater. Lett. 2014;10(5): 985–989. DOI: https://doi.org/10.1007/s13391-014-4030-9&#x0D; Zhiping Z., Yingsen Y., Quamin S., Xiaotang L., Bingfu L., Yun Y. Preparation and characterization of CaF2:Yb3+, Er3+ up-conversion phosphor. Sci. Adv. Mater. 2017;9(3-4): 523–527. DOI: https://doi.org/10.1166/sam.2017.2334&#x0D; Вахренёв Р. Г., Маякова М. Н., Кузнецов С. В., Рябова А. В., Поминова Д. В., Воронов В. В., Фёдоров П. П. Исследование синтеза и люминесцентных характеристик фторида кальция, легированного иттербием и эрбием, для биомедицинских приложений. Конденсированные среды и межфазные границы. 2016;18(4): 487–493. Режим доступа: https://journals.vsu.ru/kcmf/article/view/157&#x0D; Yu. S., Zhi Y., Su H. Hydrothermal synthesis and upconversion properties of CaF2:Er3+/Yb3+ nanocrystals. J. Nanosci. Nanotechnol. 2014;14: 3380–3386. DOI: https://doi.org/10.1166/jnn.2014.7991&#x0D; Ansaru A. A., Yadav R., Rai S. B. Physiochemical properties of greatly enhanced photoluminescence of aqueous dispersible upconversion CaF2:Yb/Ernanoparticles. Photochem. Photobiol. Sci. 2017;16: 890–896. DOI: https://doi.org/10.1039/c6pp00448b&#x0D; Rehmer A., Scheurell K., Kemnitz E. Formation of nanoscopic CaF2 via a fl uorolytic sol-gel process for antireflective coatings. J. Mater. Chem. C. 2015;3: 1716–1723. DOI: http://doi.org/10.1039/c4tc02510e&#x0D; Ritter B., Krahl T., Scholz G., Kemnitz E. Local Structures of Solid Solutions Sr1–xYxF2+x (x = 0...0.5) with fluorite structure prepared by sol-gel and mechanochemical syntheses. J. Phys. Chem. C. 2016;120(16): 8992–8999. DOI: http://doi.org/10.1021/acs.jpcc.6b01834&#x0D; Fedorov P. P., Mayakova M. N., Аlexandrov А.А., Voronov V. V., Kuznetsov S. V., Baranchikov A. E., Ivanov V. K. The melt of sodium nitrate as a new medium for synthesis of fl uorides. Inorganics. 2018;6: 38. DOI: https://doi.org/10.3390/inorganics6020038&#x0D; Ha J.-W., Sohn E.-H., Park I. J., Lee S.-B. Preparation of CaF2 microspheres by thermal decomposition of trifl uoroacetate precursor in molten salt medium. Mater. Lett. 2017;209: 357–359. DOI: http://doi.org/10.1016/j.matlet.2017.08.029&#x0D; Chen C., Sun L.-D., Li Z.-X., Li L.-L., Zhung J., Zhang Y.-W., Yan C.-H. Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir. 2010;26(11): 8797–8803. DOI: http://doi.org/10.1021/la904545a&#x0D; Guo H., Guo Y., Noh H. M., Moon B. K., Park S. H., Jeong J. H., Kim K. H. Elaboration, structure and luminescence of sphere-like CaF2:RE sub-microparticles by ionic liquids based hydrothermal process. J. Nanosci. Nanotechnol. 2016;16: 1146–1150. DOI: https://doi.org/10.1166/jnn.2016.10800&#x0D; Deng X., Dai Y., Liu J., Zhou Y., Ma P., Cheng Z., Chen Y., Deng K., Li X., Hou Z., Li C., Lin J. Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging. Biomaterials. 2015;50: 154–163. DOI: https://doi.org/10.1016/j.biomaterials.2015.01.040&#x0D; Liang L., Liu Y., Bu C., Guo L., Sun W., Nuang N., Peng T., Sebo B., Pan M., Liu W., Guo S., Zhao X.-Z. Highly uniform, bifunctional core/double shell structured b-NaYF4:Er3+, Yb3+ @ SiO2@TiO2 hexagonal sub microprisms for high performance dye sensitized solar cells. Adv. Mater. 2013;25: 2174–2180. DOI: https://doi.org/10.1002/adma.201204847&#x0D; Balabhadra S., Debasu M. L., Brites C. D. S., Ferreira R. A. S. Upconverting nanoparticles working as primary thermometers in different media. J. Phys. Chem. C. 2017;121: 13962–13968. DOI: https://doi.org/10.1021/acs.jpcc.7b04827&#x0D; Рожнова Ю. А., Кузнецов С. В., Воронов В. В., Федоров П. П. Cинтез ап-конверсионных люминофоров на основе фторида стронция, легированного Ho3+ и Er3+, для визуализаторов двухмикронного излучения. Конденсированные среды и межфазные границы. 2016;18(3): 408–413. Режим доступа: https://journals.vsu.ru/kcmf/article/view/150&#x0D; Rozhnova Yu. A., Luginina A. A., Voronov V. V., Ermakov R. P., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Arbenina V. V., Osiko V. V., Fedorov P. P. White light luminophores based on Yb3+/Er3+/Tm3+- coactivated strontium fl uoride powders. Mater. Chem. Phys. 2014;148: 201–207. DOI: https://doi.org/10.1016/j.matchemphys.2014.07.032&#x0D; Kuznetsov S., Ermakova Yu., Voronov V., Fedorov P., Busko D., Howard I. A., Richards B. S., Turshatov A. Up-conversion quantum yields of SrF2: Yb3+, Er3+ sub-micron particles prepared by precipitation from aqueous solution. J. Mater. Chem. C. 2018;6: 598–604. DOI: https://doi.org/10.1039/c7tc04913g&#x0D; Yasyrkina D. S., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Voronov V. V., Ermakov R.P., Fedorov P. P. Dependence of quantum yield of up-conversion luminescence on the composition of fl uorite-type solid solution NaY1–x–yYbxEryF4. Nanosystems: physics, chemistry, mathematics. 2013;4(5): 648–656. Режим доступа: https://cyberleninka.ru/article/n/dependence-of-quantum-yield-of-up-conversion-luminescence-on-the-composition-of-fluorite-type-solidsolution-nay-1-x-yyb-xer-yf-4&#x0D; Ryabova A. V., Pominova D. V., Krut’ko V. A., Komova M. G., Loschenov V. B. Spectroscopic research of upconversion nanomaterials based on complex oxide compounds doped with rare-earth ion pairs: Benefi t for cancer diagnostics by upconversion fl uorescence and radio sensitive methods. Photon Lasers Med. 2013;2: 117–128. DOI: https://doi.org/10.1515/plm-2013-0013&#x0D; Федоров П. П., Соболев Б. П. Концентрационная зависимость параметров элементарных ячеек фаз M1–xRxF2+x со структурой флюорита. Кристаллография. 1992;37(5): 1210–1219.&#x0D; Федоров П. П., Маякова М. Н., Кузнецов С. В., Маслов В. А., Сорокин Н. И., Баранчиков А. Е., Иванов В. К., Пыненков А. А., Усламина М. А., Нищев К. Н. Фазовая диаграмма системы NaF–CaF2 и электропроводность твердого раствора на основе CaF2. ЖНХ. 2016;61(11): 1529–1536. DOI: https://doi.org/10.1134/S003602361611005X&#x0D; Sobolev B. P. The rare earth trifl uorides. P.1. The high-temperature chemistry of the rare earth trifl uorides. Barcelona: Institut d’Estudis Catalans; 2000. 521 p.&#x0D;
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!