Zeitschriftenartikel zum Thema „Photon-upconversion nanoparticles“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-44 Zeitschriftenartikel für die Forschung zum Thema "Photon-upconversion nanoparticles" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Chen, Xian, Denfeng Peng, Qiang Ju, and Feng Wang. "Photon upconversion in core–shell nanoparticles." Chemical Society Reviews 44, no. 6 (2015): 1318–30. http://dx.doi.org/10.1039/c4cs00151f.
Der volle Inhalt der QuelleLee, Eunsang, Minhyuk Jung, Youngeun Han, et al. "Stochastic Photon Emission from Nonblinking Upconversion Nanoparticles." Journal of Physical Chemistry C 121, no. 38 (2017): 21073–79. http://dx.doi.org/10.1021/acs.jpcc.7b08509.
Der volle Inhalt der QuelleQu, Zuoming, Pengfei Duan, Jin Zhou, Yafei Wang, and Minghua Liu. "Photon upconversion in organic nanoparticles and subsequent amplification by plasmonic silver nanowires." Nanoscale 10, no. 3 (2018): 985–91. http://dx.doi.org/10.1039/c7nr07340b.
Der volle Inhalt der QuelleLiu, Wen, Runze Chen, and Sailing He. "Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity." Journal of Innovative Optical Health Sciences 12, no. 03 (2019): 1950013. http://dx.doi.org/10.1142/s1793545819500135.
Der volle Inhalt der QuelleShuai Ye, Shuai Ye, Jun Song Jun Song, Dong Wang Dong Wang, Yuliang Tian Yuliang Tian, Junle Qu Junle Qu, and and Hanben Niu and Hanben Niu. "Reduced photon quenching in Ce-doped NaYF4:Yb/Ho upconversion nanoparticles with core/shell structure." Chinese Optics Letters 14, no. 2 (2016): 021601–21605. http://dx.doi.org/10.3788/col201614.021601.
Der volle Inhalt der QuelleChen, Xian, Denfeng Peng, Qiang Ju, and Feng Wang. "ChemInform Abstract: Photon Upconversion in Core-Shell Nanoparticles." ChemInform 46, no. 21 (2015): no. http://dx.doi.org/10.1002/chin.201521300.
Der volle Inhalt der QuellePoláchová, Veronika, Matěj Pastucha, Zuzana Mikušová, et al. "Click-conjugated photon-upconversion nanoparticles in an immunoassay for honeybee pathogen Melissococcus plutonius." Nanoscale 11, no. 17 (2019): 8343–51. http://dx.doi.org/10.1039/c9nr01246j.
Der volle Inhalt der QuelleGao, Zhao, Lulu Shi, Xiao Ling, Ze Chen, Qingsong Mei, and Feng Wang. "Near-infrared photon-excited energy transfer in platinum(ii)-based supramolecular polymers assisted by upconverting nanoparticles." Chemical Communications 57, no. 15 (2021): 1927–30. http://dx.doi.org/10.1039/d0cc07445d.
Der volle Inhalt der QuelleDong, Hao, Ling-Dong Sun, Ye-Fu Wang, et al. "Photon upconversion in Yb3+–Tb3+ and Yb3+–Eu3+ activated core/shell nanoparticles with dual-band excitation." Journal of Materials Chemistry C 4, no. 19 (2016): 4186–92. http://dx.doi.org/10.1039/c6tc00413j.
Der volle Inhalt der QuelleHuang, Ying-Ying, Sulbha K. Sharma, Tianhong Dai, et al. "Can nanotechnology potentiate photodynamic therapy?" Nanotechnology Reviews 1, no. 2 (2012): 111–46. http://dx.doi.org/10.1515/ntrev-2011-0005.
Der volle Inhalt der QuelleFarka, Zdeněk, Matthias J. Mickert, Zuzana Mikušová, et al. "Surface design of photon-upconversion nanoparticles for high-contrast immunocytochemistry." Nanoscale 12, no. 15 (2020): 8303–13. http://dx.doi.org/10.1039/c9nr10568a.
Der volle Inhalt der QuelleHuang, Ling, Eugenia Kakadiaris, Tereza Vaneckova, Kai Huang, Marketa Vaculovicova, and Gang Han. "Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles." Biomaterials 201 (May 2019): 77–86. http://dx.doi.org/10.1016/j.biomaterials.2019.02.008.
Der volle Inhalt der QuelleGuo, Shaohong, Xiaoji Xie, Ling Huang, and Wei Huang. "Sensitive Water Probing through Nonlinear Photon Upconversion of Lanthanide-Doped Nanoparticles." ACS Applied Materials & Interfaces 8, no. 1 (2015): 847–53. http://dx.doi.org/10.1021/acsami.5b10192.
Der volle Inhalt der QuelleXie, Xiaoji, Nengyue Gao, Renren Deng, Qiang Sun, Qing-Hua Xu, and Xiaogang Liu. "Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core–Shell Nanoparticles." Journal of the American Chemical Society 135, no. 34 (2013): 12608–11. http://dx.doi.org/10.1021/ja4075002.
Der volle Inhalt der QuelleGorris, Hans H., and Ute Resch-Genger. "Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications." Analytical and Bioanalytical Chemistry 409, no. 25 (2017): 5875–90. http://dx.doi.org/10.1007/s00216-017-0482-8.
Der volle Inhalt der QuelleJu, Xiuhao, Jialei Song, Jianlei Han, Yonghong Shi, Yuan Gao, and Pengfei Duan. "Photofluorochromic water-dispersible nanoparticles for single-photon-absorption upconversion cell imaging." Nanotechnology 32, no. 47 (2021): 475606. http://dx.doi.org/10.1088/1361-6528/ac137f.
Der volle Inhalt der QuelleMahata, Manoj Kumar, Ranjit De, and Kang Taek Lee. "Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications." Biomedicines 9, no. 7 (2021): 756. http://dx.doi.org/10.3390/biomedicines9070756.
Der volle Inhalt der QuellePeng, Tingting, Rui Pu, Baoju Wang, et al. "The Spectroscopic Properties and Microscopic Imaging of Thulium-Doped Upconversion Nanoparticles Excited at Different NIR-II Light." Biosensors 11, no. 5 (2021): 148. http://dx.doi.org/10.3390/bios11050148.
Der volle Inhalt der QuellePrieto, Martin, Alina Y. Rwei, Teresa Alejo, et al. "Light-Emitting Photon-Upconversion Nanoparticles in the Generation of Transdermal Reactive-Oxygen Species." ACS Applied Materials & Interfaces 9, no. 48 (2017): 41737–47. http://dx.doi.org/10.1021/acsami.7b14812.
Der volle Inhalt der Quelleda Silva, Jefferson F., Rodrigo F. da Silva, Emanuel P. Santos, Lauro J. Q. Maia, and André L. Moura. "Photon-avalanche-like upconversion in NdAl3(BO3)4 nanoparticles excited at 1064 nm." Applied Physics Letters 117, no. 15 (2020): 151102. http://dx.doi.org/10.1063/5.0024619.
Der volle Inhalt der QuelleChen, Kun, Wenhong Su, Yue Wang, et al. "Nanocomposites of carbon nanotubes and photon upconversion nanoparticles for enhanced optical limiting performance." Journal of Materials Chemistry C 6, no. 27 (2018): 7311–16. http://dx.doi.org/10.1039/c8tc01576g.
Der volle Inhalt der QuelleYang, Bingxiao, Yangbo Wang, Tian Wei, et al. "Solution-Processable Near-Infrared-Responsive Composite of Perovskite Nanowires and Photon-Upconversion Nanoparticles." Advanced Functional Materials 28, no. 31 (2018): 1801782. http://dx.doi.org/10.1002/adfm.201801782.
Der volle Inhalt der QuelleChen, Xiaohu, Zhengyu Gui, Yong Liang, et al. "Characterizing the luminescent properties of upconversion nanoparticles in single and densely packed state." Journal of Innovative Optical Health Sciences 12, no. 01 (2019): 1841004. http://dx.doi.org/10.1142/s1793545818410043.
Der volle Inhalt der QuelleWickerts, Sanna, Rickard Arvidsson, Björn A. Sandén, Gregory Peters, Lili Hou, and Bo Albinsson. "Prospective Life-Cycle Modeling of Quantum Dot Nanoparticles for Use in Photon Upconversion Devices." ACS Sustainable Chemistry & Engineering 9, no. 14 (2021): 5187–95. http://dx.doi.org/10.1021/acssuschemeng.1c00376.
Der volle Inhalt der QuelleHlaváček, Antonín, Matthias J. Mickert, Tero Soukka, et al. "Large-Scale Purification of Photon-Upconversion Nanoparticles by Gel Electrophoresis for Analogue and Digital Bioassays." Analytical Chemistry 91, no. 2 (2018): 1241–46. http://dx.doi.org/10.1021/acs.analchem.8b04488.
Der volle Inhalt der QuelleYonemura, Hiroaki, Yuji Naka, Ryuji Matsumoto, and Sunao Yamada. "Effects of Silver and Gold Nanoparticles on Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation." Transactions of the Materials Research Society of Japan 40, no. 3 (2015): 195–201. http://dx.doi.org/10.14723/tmrsj.40.195.
Der volle Inhalt der QuellePerego, Jacopo, Jacopo Pedrini, Charl X. Bezuidenhout, et al. "Engineering Porous Emitting Framework Nanoparticles with Integrated Sensitizers for Low‐Power Photon Upconversion by Triplet Fusion." Advanced Materials 31, no. 40 (2019): 1903309. http://dx.doi.org/10.1002/adma.201903309.
Der volle Inhalt der QuelleGee, William J. "Recent Trends Concerning Upconversion Nanoparticles and Near-IR Emissive Lanthanide Materials in the Context of Forensic Applications." Australian Journal of Chemistry 72, no. 3 (2019): 164. http://dx.doi.org/10.1071/ch18502.
Der volle Inhalt der QuelleResch-Genger, Ute, and Hans H. Gorris. "Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies." Analytical and Bioanalytical Chemistry 409, no. 25 (2017): 5855–74. http://dx.doi.org/10.1007/s00216-017-0499-z.
Der volle Inhalt der QuelleModlitbová, Pavlína, Antonín Hlaváček, Tereza Švestková, et al. "The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: Bioaccumulation, imaging, and spectroscopic studies." Chemosphere 225 (June 2019): 723–34. http://dx.doi.org/10.1016/j.chemosphere.2019.03.074.
Der volle Inhalt der QuelleZhong, Yeteng, Gan Tian, Zhanjun Gu, et al. "Luminescent Nanoparticles: Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenching-Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd3+ -Sensitized Nanoparticles (Adv. Mater. 18/2014)." Advanced Materials 26, no. 18 (2014): 2766. http://dx.doi.org/10.1002/adma.201470117.
Der volle Inhalt der QuelleZhong, Yeteng, Gan Tian, Zhanjun Gu, et al. "Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenching-Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles." Advanced Materials 26, no. 18 (2013): 2831–37. http://dx.doi.org/10.1002/adma.201304903.
Der volle Inhalt der QuelleModlitbová, Pavlína, Sára Střítežská, Antonín Hlaváček, David Prochazka, Pavel Pořízka, and Jozef Kaiser. "Laser-induced breakdown spectroscopy as a straightforward bioimaging tool for plant biologists; the case study for assessment of photon-upconversion nanoparticles in Brassica oleracea L. plant." Ecotoxicology and Environmental Safety 214 (May 2021): 112113. http://dx.doi.org/10.1016/j.ecoenv.2021.112113.
Der volle Inhalt der QuelleWang, Jiaying, Haiying Wang, Sijin Zuo, et al. "Synergistic effects of lanthanide surface adhesion and photon-upconversion for enhanced near-infrared responsive photodegradation of organic contaminants in wastewater." Environmental Science: Nano 7, no. 11 (2020): 3333–42. http://dx.doi.org/10.1039/d0en00670j.
Der volle Inhalt der QuelleYonemura, Hiroaki, Yuji Naka, Mitsuhiro Nishino, Hiroshi Sakaguchi, and Sunao Yamada. "Effect of gold nanoparticle on photon upconversion based on sensitized triplet–triplet annihilation in polymer films." Molecular Crystals and Liquid Crystals 654, no. 1 (2017): 196–200. http://dx.doi.org/10.1080/15421406.2017.1358044.
Der volle Inhalt der QuelleMartínez, Eduardo D., ALI FRANCISCO GARCIA FLORES, Albano Carneiro Neto, et al. "Controlling the Thermal Switching in Upconverting Nanoparticles Through Surface Chemistry." Nanoscale, 2021. http://dx.doi.org/10.1039/d1nr03223b.
Der volle Inhalt der QuelleSu, Qianqian, Han-Lin Wei, Yachong Liu, et al. "Six-photon upconverted excitation energy lock-in for ultraviolet-C enhancement." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-24664-x.
Der volle Inhalt der QuelleChen, Chaohao, Fan Wang, Shihui Wen, et al. "Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles." Nature Communications 9, no. 1 (2018). http://dx.doi.org/10.1038/s41467-018-05842-w.
Der volle Inhalt der QuelleKostiv, Uliana, Jan Kučka, Volodymyr Lobaz, et al. "Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes." Scientific Reports 10, no. 1 (2020). http://dx.doi.org/10.1038/s41598-020-77112-z.
Der volle Inhalt der QuelleBrandmeier, Julian C., Kirsti Raiko, Zdeněk Farka, et al. "Effect of Particle Size and Surface Chemistry of Photon‐Upconversion Nanoparticles on Analog and Digital Immunoassays for Cardiac Troponin." Advanced Healthcare Materials, July 15, 2021, 2100506. http://dx.doi.org/10.1002/adhm.202100506.
Der volle Inhalt der Quellede Oliveira Lima, Karmel, Luiz Fernando dos Santos, Rodrigo Galvão, Antonio Claudio Tedesco, Leonardo de Souza Menezes, and Rogéria Rocha Gonçalves. "Single Er3+, Yb3+: KGd3F10 Nanoparticles for Nanothermometry." Frontiers in Chemistry 9 (July 21, 2021). http://dx.doi.org/10.3389/fchem.2021.712659.
Der volle Inhalt der Quelle"Light-Responsive Porous Aromatic Frameworks: Generation of Photon Upconverted Emission and Modulation of Porosity by Bulk Photoisomerization." Proceedings International 2, no. 2 (2020): 36–37. http://dx.doi.org/10.33263/proceedings22.036037.
Der volle Inhalt der QuelleHan, Sanyang, Zhigao Yi, Jiangbin Zhang, et al. "Photon upconversion through triplet exciton-mediated energy relay." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-23967-3.
Der volle Inhalt der QuelleAlexandrov, Alexander A., Mariya N. Mayakova, Valery V. Voronov та ін. "Синтез ап-конверсионных люминофоров на основе фторида кальция". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, № 1 (2020). http://dx.doi.org/10.17308/kcmf.2020.22/2524.
Der volle Inhalt der Quelle