Zeitschriftenartikel zum Thema „Physics, Low Temperature|Physics, Condensed Matter“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Physics, Low Temperature|Physics, Condensed Matter.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Physics, Low Temperature|Physics, Condensed Matter" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Feng, Yejun, R. Jaramillo, Jiyang Wang, Yang Ren und T. F. Rosenbaum. „Invited Article: High-pressure techniques for condensed matter physics at low temperature“. Review of Scientific Instruments 81, Nr. 4 (April 2010): 041301. http://dx.doi.org/10.1063/1.3400212.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hallock, Bob, und Mikko Paalanenn. „New developments in low temperature physics“. Journal of Physics: Condensed Matter 21, Nr. 16 (20.03.2009): 160402. http://dx.doi.org/10.1088/0953-8984/21/16/160402.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

von Keudell, A., und V. Schulz-von der Gathen. „Foundations of low-temperature plasma physics—an introduction“. Plasma Sources Science and Technology 26, Nr. 11 (12.10.2017): 113001. http://dx.doi.org/10.1088/1361-6595/aa8d4c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bauer, E., G. Hilscher, H. Kaldarar, H. Michor, E. W. Scheidt, P. Rogl, A. Gribanov und Y. Seropegin. „Formation and low temperature physics of“. Journal of Magnetism and Magnetic Materials 310, Nr. 2 (März 2007): e73-e75. http://dx.doi.org/10.1016/j.jmmm.2006.10.273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Maris, Humphrey J. „Phonon physics and low temperature detectors of dark matter“. Journal of Low Temperature Physics 93, Nr. 3-4 (November 1993): 355–64. http://dx.doi.org/10.1007/bf00693446.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Richardson, Robert C., Eric N. Smith und Robert C. Dynes. „Experimental Techniques in Condensed Matter Physics at Low Temperatures“. Physics Today 42, Nr. 10 (Oktober 1989): 126–27. http://dx.doi.org/10.1063/1.2811189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Behringer, R. P. „Experimental Techniques in Condensed Matter Physics at Low Temperatures“. American Journal of Physics 57, Nr. 3 (März 1989): 287. http://dx.doi.org/10.1119/1.16062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ponkratov, Vladimir V., Josef Friedrich, Jane M. Vanderkooi, Alexander L. Burin und Yuri A. Berlin. „Physics of Proteins at Low Temperature“. Journal of Low Temperature Physics 137, Nr. 3/4 (November 2004): 289–317. http://dx.doi.org/10.1023/b:jolt.0000049058.81275.72.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nucciotti, A. „Low Temperature Detectors for Neutrino Physics“. Journal of Low Temperature Physics 176, Nr. 5-6 (20.12.2013): 848–59. http://dx.doi.org/10.1007/s10909-013-1006-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kibble, T. W. B., und G. R. Pickett. „Introduction. Cosmology meets condensed matter“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, Nr. 1877 (05.06.2008): 2793–802. http://dx.doi.org/10.1098/rsta.2008.0098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB (‘Cosmology in the Laboratory’) that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF (‘Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology’). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting ‘Cosmology meets condensed matter’, held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.
11

MORI, Nobuo. „Development of High-Pressure Technique for Low Temperature Physics. Low Temperature and High Pressure Research for Solid State Physics.“ Review of High Pressure Science and Technology 11, Nr. 3 (2001): 173–80. http://dx.doi.org/10.4131/jshpreview.11.173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

GIULIANI, A. „CUORE: low-temperature techniques for neutrino physics“. Physica B: Condensed Matter 329-333 (Mai 2003): 1570–73. http://dx.doi.org/10.1016/s0921-4526(02)02299-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Gusev, Yuri Vladimirovich. „The quasi-low temperature behaviour of specific heat“. Royal Society Open Science 6, Nr. 1 (Januar 2019): 171285. http://dx.doi.org/10.1098/rsos.171285.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A new mathematical approach to condensed matter physics, based on the finite temperature field theory, was recently proposed. The field theory is a scale-free formalism; thus, it denies absolute values of thermodynamic temperature and uses dimensionless thermal variables, which are obtained with the group velocities of sound and the interatomic distance. This formalism was previously applied to the specific heat of condensed matter and predicted its fourth power of temperature behaviour at sufficiently low temperatures, which was tested by experimental data for diamond lattice materials. The range of temperatures with the quartic law varies for different materials; therefore, it is called the quasi-low temperature regime. The quasi-low temperature behaviour of specific heat is verified here with experimental data for the fcc lattice materials, silver chloride and lithium iodide. The conjecture that the fourth order behaviour is universal for all condensed matter systems has also supported the data for glassy matter: vitreous silica. This law is long known to hold for the bcc solid helium-4. The characteristic temperatures of the threshold of the quasi-low temperature regime are found for the studied materials. The scaling in the specific heat of condensed matter is expressed by the dimensionless parameter, which is explored with the data for several glasses. The explanation of the correlation of the ‘boson peak’ temperature with the shear velocity is proposed. The critique of the Debye theory of specific heat and the Born–von Karman model of the lattice dynamics is given.
14

Vidali, Gianfranco. „Cosmic Low Temperature Physics: Making Molecules on Stardust“. Journal of Low Temperature Physics 170, Nr. 1-2 (29.09.2012): 1–30. http://dx.doi.org/10.1007/s10909-012-0744-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kambara, Hiroshi, Tomohiro Matsui, Yasuhiro Niimi und Hiroshi Fukuyama. „Development of an ultra-low temperature scanning tunneling microscope and applications for low temperature physics“. Journal of Physics and Chemistry of Solids 66, Nr. 8-9 (August 2005): 1552–55. http://dx.doi.org/10.1016/j.jpcs.2005.05.074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Tang, Shuang, und Mildred S. Dresselhaus. „Electronic properties of nano-structured bismuth-antimony materials“. J. Mater. Chem. C 2, Nr. 24 (2014): 4710–26. http://dx.doi.org/10.1039/c4tc00146j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Bismuth antimony (Bi1−xSbx) is one of the most important materials systems for fundamental materials science, condensed matter physics, low temperature thermoelectrics, infrared applications, and beyond.
17

UWATOKO, Yoshiya, Kazuyuki MATSUBAYASHI, Takehiko MATSUMOTO, Naofumi ASO, Masakazu NISHI, Tetsuya FUJIWARA, Masato HEDO et al. „Development of Palm Cubic Anvil Apparatus for Low Temperature Physics“. Review of High Pressure Science and Technology 18, Nr. 3 (2008): 230–36. http://dx.doi.org/10.4131/jshpreview.18.230.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

TAKAHASHI, Hiroki. „Development of High-Pressure Technique for Low Temperature Physics. Low Temperature Measurements Using a Diamond Anvil Cell.“ Review of High Pressure Science and Technology 11, Nr. 3 (2001): 195–202. http://dx.doi.org/10.4131/jshpreview.11.195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Vishnyakov und Dragan. „Coupling parameter for low-temperature plasma with condensed phase“. Condensed Matter Physics 10, Nr. 2 (Juni 2007): 201. http://dx.doi.org/10.5488/cmp.10.2.201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

LARSON, M. „The science capability of the Low Temperature Microgravity Physics Facility“. Physica B: Condensed Matter 329-333 (Mai 2003): 1588–89. http://dx.doi.org/10.1016/s0921-4526(02)02304-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Fiorini, Ettore. „Application of Low Temperature Detectors in Physics: Yesterday, Today, Tomorrow“. Journal of Low Temperature Physics 179, Nr. 5-6 (22.02.2014): 277–90. http://dx.doi.org/10.1007/s10909-014-1118-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Sasaki, Y., E. Hayata, T. Tanaka, H. Ito und T. Mizusaki. „Construction of ULT-MRI cryostat for ultra low temperature physics“. Journal of Low Temperature Physics 138, Nr. 3-4 (Februar 2005): 911–16. http://dx.doi.org/10.1007/s10909-005-2324-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

MORI, Nobuo. „Research Projects for Solid State Physics under High Pressure and Low Temperature.“ Review of High Pressure Science and Technology 11, Nr. 1 (2001): 44–49. http://dx.doi.org/10.4131/jshpreview.11.44.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Leiderer, Paul, Jukka Pekola und Neil Sullivan. „Special Issue: 50 Years of the Journal of Low Temperature Physics“. Journal of Low Temperature Physics 197, Nr. 3-4 (27.09.2019): 111–12. http://dx.doi.org/10.1007/s10909-019-02235-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Collin, E., T. Moutonet, J. S. Heron, O. Bourgeois, Yu M. Bunkov und H. Godfrin. „A Tunable Hybrid Electro-magnetomotive NEMS Device for Low Temperature Physics“. Journal of Low Temperature Physics 162, Nr. 5-6 (28.10.2010): 653–60. http://dx.doi.org/10.1007/s10909-010-0257-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Jennings, B. K., und A. Schwenk. „Modern topics in theoretical nuclear physics“. Canadian Journal of Physics 85, Nr. 3 (01.03.2007): 219–30. http://dx.doi.org/10.1139/p07-044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this review, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention on the strong connections to many-body atomic and condensed-matter physics, as well as to astrophysics. This makes it an exciting era for nuclear physics. PACS Nos.: 21.60.–n, 21.30.Fe
27

Kolev, St, G. J. M. Hagelaar, G. Fubiani und J.-P. Boeuf. „Physics of a magnetic barrier in low-temperature bounded plasmas: insight from particle-in-cell simulations“. Plasma Sources Science and Technology 21, Nr. 2 (01.03.2012): 025002. http://dx.doi.org/10.1088/0963-0252/21/2/025002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Kibble, T. W. B. „Phase Transitions and Topological Defects in the Early Universe“. Australian Journal of Physics 50, Nr. 4 (1997): 697. http://dx.doi.org/10.1071/p96076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Our present theories of particle physics and cosmology, taken together, suggest that very early in its history, the universe underwent a series of phase transitions, at which topological defects, similar to those formed in some condensed matter transitions, may have been created. Such defects, in particular cosmic strings, may survive long enough to have important observable effects in the universe today. Predicting these effects requires us to estimate the initial defect density and the way that defects subsequently evolve. Very similar problems arise in condensed matter systems, and recently it has been possible to test some of our ideas about the formation of defects using experiments with liquid helium-3 (in collaboration with the Low Temperature Laboratory in Helsinki). I shall review the present status of this theory.
29

Dakhnovskii, Yu I., A. A. Ovchinnikov und M. B. Semenov. „Low-temperature adiabatic chemical reactions in the condensed phase“. Molecular Physics 63, Nr. 3 (20.02.1988): 497–515. http://dx.doi.org/10.1080/00268978800100341.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bonfanti, Silvia, und Giancarlo Jug. „On the Paramagnetic Impurity Concentration of Silicate Glasses from Low-Temperature Physics“. Journal of Low Temperature Physics 180, Nr. 3-4 (19.05.2015): 214–37. http://dx.doi.org/10.1007/s10909-015-1311-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Collin, E., J. Kofler, J. S. Heron, O. Bourgeois, Yu M. Bunkov und H. Godfrin. „Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics“. Journal of Low Temperature Physics 158, Nr. 3-4 (19.09.2009): 678–84. http://dx.doi.org/10.1007/s10909-009-9960-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Skyba, P. „Notes on Measurement Methods of Mechanical Resonators Used in Low Temperature Physics“. Journal of Low Temperature Physics 160, Nr. 5-6 (22.06.2010): 219–39. http://dx.doi.org/10.1007/s10909-010-0189-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Andersson, O., T. Matsuo, H. Suga und P. Ferloni. „Low-temperature heat capacity of urea“. International Journal of Thermophysics 14, Nr. 1 (Januar 1993): 149–58. http://dx.doi.org/10.1007/bf00522668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

YEH, N. C., und A. D. BEYER. „UNCONVENTIONAL LOW-ENERGY EXCITATIONS OF CUPRATE SUPERCONDUCTORS“. International Journal of Modern Physics B 23, Nr. 22 (10.09.2009): 4543–77. http://dx.doi.org/10.1142/s021797920905403x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Recent development in the physics of high-temperature cuprate superconductivity is reviewed, with special emphasis on the phenomena of unconventional and non-universal low-energy excitations of hole- and electron-type cuprate superconductors and the possible physical origin. A phenomenology based on coexisting competing orders with cuprate superconductivity in the ground state appears to provide a consistent account for a wide range of experimental findings, including the presence (absence) of pseudogaps and Fermi arcs above the superconducting transition Tc in hole-type (electron-type) cuprate superconductors and the novel conductance modulations below Tc, particularly in the vortex state. Moreover, the competing order scenario is compatible with the possibility of pre-formed Cooper pairs and significant phase fluctuations in cuprate superconductors. The physical implications of the unified phenomenology and remaining open issues for the microscopic mechanism of cuprate superconductivity are discussed.
35

Cartwright, Julyan H. E. „Nonlinear dynamics determines the thermodynamic instability of condensed matter in vacuo“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, Nr. 2174 (08.06.2020): 20190534. http://dx.doi.org/10.1098/rsta.2019.0534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Condensed matter is thermodynamically unstable in a vacuum. That is what thermodynamics tells us through the relation showing that condensed matter at temperatures above absolute zero always has non-zero vapour pressure. This instability implies that at low temperatures energy must not be distributed equally among atoms in the crystal lattice but must be concentrated. In dynamical systems such concentrations of energy in localized excitations are well known in the form of discrete breathers, solitons and related nonlinear phenomena. It follows that to satisfy thermodynamics such localized excitations must exist in systems of condensed matter at arbitrarily low temperature and as such the nonlinear dynamics of condensed matter is crucial for its thermodynamics. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.
36

Rehn, J., und R. Moessner. „Maxwell electromagnetism as an emergent phenomenon in condensed matter“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, Nr. 2075 (28.08.2016): 20160093. http://dx.doi.org/10.1098/rsta.2016.0093.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The formulation of a complete theory of classical electromagnetism by Maxwell is one of the milestones of science. The capacity of many-body systems to provide emergent mini-universes with vacua quite distinct from the one we inhabit was only recognized much later. Here, we provide an account of how simple systems of localized spins manage to emulate Maxwell electromagnetism in their low-energy behaviour. They are much less constrained by symmetry considerations than the relativistically invariant electromagnetic vacuum, as their substrate provides a non-relativistic background with even translational invariance broken. They can exhibit rich behaviour not encountered in conventional electromagnetism. This includes the existence of magnetic monopole excitations arising from fractionalization of magnetic dipoles; as well as the capacity of disorder, by generating defects on the lattice scale, to produce novel physics, as exemplified by topological spin glassiness or random Coulomb magnetism. This article is part of the themed issue ‘Unifying physics and technology in light of Maxwell's equations’.
37

UWATOKO, Yoshiya. „Development of High-Pressure Technique for Low Temperature Physics. Magnetic Measurements under High Pressure.“ Review of High Pressure Science and Technology 11, Nr. 3 (2001): 181–86. http://dx.doi.org/10.4131/jshpreview.11.181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

MÔRI, Nobuo. „Progress in Cubic-Anvil High Pressure Techniques for Low Temperature Solid State Physics Research“. Review of High Pressure Science and Technology 14, Nr. 4 (2004): 335–45. http://dx.doi.org/10.4131/jshpreview.14.335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Sorokin, L. M., L. P. Efimenko, A. E. Kalmykov und Yu I. Smolin. „Low-Dimensional Systems and Surface Physics“. Physics of the Solid State 46, Nr. 5 (Mai 2004): 983–88. http://dx.doi.org/10.1134/1.1744979.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Andersson, Ove, Bertil Sundqvist und Gunnar Bäckström. „A low-temperature high-pressure apparatus with a temperature control system“. High Pressure Research 10, Nr. 4 (August 1992): 599–605. http://dx.doi.org/10.1080/08957959208202842.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ionin, A. A., I. V. Kochetov, A. P. Napartovich und N. N. Yuryshev. „Physics and engineering of singlet delta oxygen production in low-temperature plasma“. Journal of Physics D: Applied Physics 40, Nr. 2 (05.01.2007): R25—R61. http://dx.doi.org/10.1088/0022-3727/40/2/r01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Causa, Federica, Gabriele Gervasini, Andrea Uccello, Gustavo Granucci, Daria Ricci und Natale Rispoli. „Obtaining the unperturbed plasma potential in low-density, low-temperature plasmas“. Plasma Sources Science and Technology 30, Nr. 4 (01.04.2021): 045008. http://dx.doi.org/10.1088/1361-6595/abef1b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Kim, S. J., M.-A. Nicolet, R. S. Averback und D. Peak. „Low-temperature ion-beam mixing in metals“. Physical Review B 37, Nr. 1 (01.01.1988): 38–49. http://dx.doi.org/10.1103/physrevb.37.38.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Takahashi, Mitsue, Yuko Hosokoshi, Hiroki Nakano, Tsuneaki Goto, Minoru Takahashi und Minoru Kinoshita. „Low-Temperature Magnetic Properties of Nitronyl Nitroxides“. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 306, Nr. 1 (Oktober 1997): 111–18. http://dx.doi.org/10.1080/10587259708044556.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Sergeev, Gleb B. „Reactions in Solid Low Temperature Co-condensates“. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 313, Nr. 1 (Mai 1998): 155–66. http://dx.doi.org/10.1080/10587259808044269.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Dmowski, L. H., J. Przybytek und E. Litwin-Staszewska. „Manganin sensors as low temperature pressure gauges“. High Pressure Research 19, Nr. 1-6 (September 2000): 353–57. http://dx.doi.org/10.1080/08957950008202577.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Horibe, A., S. Fukusako und M. Yamada. „Surface tension of low-temperature aqueous solutions“. International Journal of Thermophysics 17, Nr. 2 (März 1996): 483–93. http://dx.doi.org/10.1007/bf01443405.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Takushima, M., und Y. Kajikawa. „Excess As in low-temperature grown InAs“. physica status solidi (c) 5, Nr. 9 (Juli 2008): 2781–83. http://dx.doi.org/10.1002/pssc.200779157.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Winter, J. „Dust in fusion devices—a multi-faceted problem connecting high- and low-temperature plasma physics“. Plasma Physics and Controlled Fusion 46, Nr. 12B (19.11.2004): B583—B592. http://dx.doi.org/10.1088/0741-3335/46/12b/047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Bansal, Kanika, und Shouvik Datta. „Dielectric Response of Light Emitting Semiconductor Junction Diodes: Frequency and Temperature Domain Study“. MRS Proceedings 1635 (2014): 49–54. http://dx.doi.org/10.1557/opl.2014.206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
ABSTRACTWe report a change in the dielectric response of AlGaInP based multi quantum well diodes with the onset of modulated light emission. Observed variation in junction capacitance and modulated light emission, with frequency and temperature, suggests participation of slow defect channels in fast radiative recombination dynamics. Our work establishes prominent connection between electrical and optical properties of light emitting diodes and provides a tool to investigate the interesting condensed matter physics of these structures. Our observations demand a generalized physical framework, beyond conventional models, to understand an active light emitting diode under charge carrier injection. We suggest that the low frequency response can compromise the performance of these diodes under high frequency applications. We also suggest how internal quantum well structure can affect modulated light output efficiency of the device.

Zur Bibliographie