Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Plant viruses.

Zeitschriftenartikel zum Thema „Plant viruses“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Plant viruses" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kawakami, Shigeki, and Yuichiro Watanabe. "Plant viruses. Movement proteins of plant viruses." Uirusu 49, no. 2 (1999): 107–18. http://dx.doi.org/10.2222/jsv.49.107.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ehara, Yoshio. "Special issue: Plant viruses. Plant response to viruses." Uirusu 44, no. 1 (1994): 55–60. http://dx.doi.org/10.2222/jsv.44.55.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Watanabe, Yuichiro. "Special issue: Plant viruses. Movement proteins of plant viruses." Uirusu 44, no. 1 (1994): 11–17. http://dx.doi.org/10.2222/jsv.44.11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ogawa, Toshiya. "Special issue: Plant viruses. Transgenic resistance to plant viruses." Uirusu 44, no. 1 (1994): 69–76. http://dx.doi.org/10.2222/jsv.44.69.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cao, Xinran, Jie Liu, Jianguo Pang, et al. "Common but Nonpersistent Acquisitions of Plant Viruses by Plant-Associated Fungi." Viruses 14, no. 10 (2022): 2279. http://dx.doi.org/10.3390/v14102279.

Der volle Inhalt der Quelle
Annotation:
Investigating a virus’s host range and cross-infection is important for better understanding the epidemiology and emergence of viruses. Previously, our research group discovered a natural infection of a plant RNA virus, cumber mosaic virus (genus Cucumovirus, family Bromoviridae), in a plant pathogenic basidiomycetous fungus, Rhizoctonia solani, isolated from a potato plant grown in the field. Here, we further extended the study to investigate whether similar cross-infection of plant viruses occurs widely in plant-associated fungi in natural conditions. Various vegetable plants such as spinach
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bagni. "The Plant Viruses." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 275, no. 3 (1989): 383. http://dx.doi.org/10.1016/0022-0728(89)87241-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chung, Bong-Nam, Tomas Canto, and Peter Palukaitis. "Stability of recombinant plant viruses containing genes of unrelated plant viruses." Journal of General Virology 88, no. 4 (2007): 1347–55. http://dx.doi.org/10.1099/vir.0.82477-0.

Der volle Inhalt der Quelle
Annotation:
The stability of hybrid plant viruses that might arise by recombination in transgenic plants was examined using hybrid viruses derived from the viral expression vectors potato virus X (PVX) and tobacco rattle virus (TRV). The potato virus Y (PVY) NIb and HCPro open reading frames (ORFs) were introduced into PVX to generate PVX-NIb and PVX-HCPro, while the PVY NIb ORF was introduced into a vector derived from TRV RNA2 to generate TRV-NIb. All three viruses were unstable and most of the progeny viruses had lost the inserted sequences between 2 and 4 weeks post-inoculation. There was some variati
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Roossinck, Marilyn J. "Lifestyles of plant viruses." Philosophical Transactions of the Royal Society B: Biological Sciences 365, no. 1548 (2010): 1899–905. http://dx.doi.org/10.1098/rstb.2010.0057.

Der volle Inhalt der Quelle
Annotation:
The vast majority of well-characterized eukaryotic viruses are those that cause acute or chronic infections in humans and domestic plants and animals. However, asymptomatic persistent viruses have been described in animals, and are thought to be sources for emerging acute viruses. Although not previously described in these terms, there are also many viruses of plants that maintain a persistent lifestyle. They have been largely ignored because they do not generally cause disease. The persistent viruses in plants belong to the family Partitiviridae or the genus Endornavirus . These groups also h
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bagni. "The Filamentous Plant Viruses." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 275, no. 3 (1989): 384. http://dx.doi.org/10.1016/0022-0728(89)87242-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bagni. "The Filamentous Plant Viruses." Bioelectrochemistry and Bioenergetics 21, no. 3 (1989): 384. http://dx.doi.org/10.1016/0302-4598(89)85020-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Horejs, Christine-Maria. "Plant viruses join forces." Nature Reviews Materials 4, no. 6 (2019): 353. http://dx.doi.org/10.1038/s41578-019-0119-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

de Jager, C. P. "Plant resistance to viruses." Physiological and Molecular Plant Pathology 36, no. 3 (1990): 265–66. http://dx.doi.org/10.1016/0885-5765(90)90032-s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Reisser, W. "Chlorella-Viruses: A New Group of Plant Viruses." Botanica Acta 102, no. 2 (1989): 117–18. http://dx.doi.org/10.1111/j.1438-8677.1989.tb00076.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

ISHIKAWA, Masayuki. "Special issue: Plant viruses. Studies on the replication mechanisms of plant RNA viruses." Uirusu 44, no. 1 (1994): 3–10. http://dx.doi.org/10.2222/jsv.44.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Grešíková, Simona. "The transmission of plant viruses." Agriculture (Pol'nohospodárstvo) 68, no. 3 (2022): 119–26. http://dx.doi.org/10.2478/agri-2022-0011.

Der volle Inhalt der Quelle
Annotation:
Abstract Plant viruses are a threat to a sustainable economy because they cause economic losses in yields. The epidemiology of plant viruses is of particular interest because of their dynamic spread by insect vectors and their transmission by seeds. The speed and direction of viral evolution are determined by the selective environment in which they are found. Knowledge of the ecology of plant viruses is critical to the transmission of many plant viruses. Accurate and timely detection of plant viruses is an essential part of their control. Rapid climate change and the globalization of trade thr
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

TAKANAMI, Yoichi. "Satellite viruses and satellite RNAs associated with plant viruses." Uirusu 37, no. 1 (1987): 81–88. http://dx.doi.org/10.2222/jsv.37.81.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Kim, Myung-Hwi, Sun-Jung Kwon, and Jang-Kyun Seo. "Evolution of Plant RNA Viruses and Mechanisms in Overcoming Plant Resistance." Research in Plant Disease 27, no. 4 (2021): 137–48. http://dx.doi.org/10.5423/rpd.2021.27.4.137.

Der volle Inhalt der Quelle
Annotation:
Plant RNA viruses are one of the most destructive pathogens that cause a significant loss in crop production worldwide. They have evolved with high genetic diversity and adaptability due to the short replication cycle and high mutation rate during genome replication, which are characteristics of RNA viruses. Plant RNA viruses exist as quasispecies with high genetic diversity; thereby, a rapid population transition with new fitness can occur due to selective pressure resulting from environmental changes. Plant resistance can act as selective pressure and affect the fitness of the virus, which m
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Ali, Zahir, and Magdy M. Mahfouz. "CRISPR/Cas systems versus plant viruses: engineering plant immunity and beyond." Plant Physiology 186, no. 4 (2021): 1770–85. http://dx.doi.org/10.1093/plphys/kiab220.

Der volle Inhalt der Quelle
Annotation:
Abstract Molecular engineering of plant immunity to confer resistance against plant viruses holds great promise for mitigating crop losses and improving plant productivity and yields, thereby enhancing food security. Several approaches have been employed to boost immunity in plants by interfering with the transmission or lifecycles of viruses. In this review, we discuss the successful application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) systems to engineer plant immunity, increase plant resistance to viruses, and develop
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Saha, A., B. Saha, and D. Saha. "Major plant viruses: an overview." NBU Journal of Plant Sciences 4, no. 1 (2010): 11–19. http://dx.doi.org/10.55734/nbujps.2010.v04i01.002.

Der volle Inhalt der Quelle
Annotation:
Plant viruses cause severe diseases leading to enormous crop loss. The present day viral researches of economic plants are centered on identification of virus, molecular characterization and management of viral discases. Till date more than thousand viruses have been classified into several families. It is desirable to know about the different virus families along with their type genus and/or important genus. But due to an enormous volume of literature published on this aspect, it becomes difficult to study all of them. Hence the present review has highlighted the salient features of the major
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Saha, A., B. Saha, and D. Saha. "Major plant viruses: an overview." NBU Journal of Plant Sciences 4, no. 1 (2010): 11–19. http://dx.doi.org/10.55734/nbujps.2010.v04i01.002.

Der volle Inhalt der Quelle
Annotation:
Plant viruses cause severe diseases leading to enormous crop loss. The present day viral researches of economic plants are centered on identification of virus, molecular characterization and management of viral discases. Till date more than thousand viruses have been classified into several families. It is desirable to know about the different virus families along with their type genus and/or important genus. But due to an enormous volume of literature published on this aspect, it becomes difficult to study all of them. Hence the present review has highlighted the salient features of the major
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Geng, Guowei, Deya Wang, Zhifei Liu, et al. "Translation of Plant RNA Viruses." Viruses 13, no. 12 (2021): 2499. http://dx.doi.org/10.3390/v13122499.

Der volle Inhalt der Quelle
Annotation:
Plant RNA viruses encode essential viral proteins that depend on the host translation machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′ polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have evolved a variety of translation strategies such as cap-independent translation, translation recoding on initiation and termination sites, and post-translation processes. This review focuses on advances in cap-independent t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Valarmathi, P. "Emerging plant viruses in cotton." Journal of Pharmacognosy and Phytochemistry 9, no. 4S (2020): 22–27. http://dx.doi.org/10.22271/phyto.2020.v9.i4sa.11891.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Ghabrial, Said A., and Nobuhiro Suzuki. "Viruses of Plant Pathogenic Fungi." Annual Review of Phytopathology 47, no. 1 (2009): 353–84. http://dx.doi.org/10.1146/annurev-phyto-080508-081932.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Garcia-Ruiz, Hernan. "Susceptibility Genes to Plant Viruses." Viruses 10, no. 9 (2018): 484. http://dx.doi.org/10.3390/v10090484.

Der volle Inhalt der Quelle
Annotation:
Plant viruses use cellular factors and resources to replicate and move. Plants respond to viral infection by several mechanisms, including innate immunity, autophagy, and gene silencing, that viruses must evade or suppress. Thus, the establishment of infection is genetically determined by the availability of host factors necessary for virus replication and movement and by the balance between plant defense and viral suppression of defense responses. Host factors may have antiviral or proviral activities. Proviral factors condition susceptibility to viruses by participating in processes essentia
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

TADAMURA, Kazuki, and Kenji NAKAHARA. "Plant Innate Immunity against Viruses." KAGAKU TO SEIBUTSU 52, no. 12 (2014): 805–13. http://dx.doi.org/10.1271/kagakutoseibutsu.52.805.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Seron, Karin. "Vascular Movement of Plant Viruses." Molecular Plant-Microbe Interactions 9, no. 6 (1996): 435. http://dx.doi.org/10.1094/mpmi-9-0435.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Garcia‐Ruiz, Hernan. "Host factors against plant viruses." Molecular Plant Pathology 20, no. 11 (2019): 1588–601. http://dx.doi.org/10.1111/mpp.12851.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Richards, K. E. "Molecular Biology of Plant Viruses." Plant Science 161, no. 3 (2001): 627. http://dx.doi.org/10.1016/s0168-9452(01)00429-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Richards, K. "Plant viruses as molecular pathogens." Plant Science 163, no. 5 (2002): 1069. http://dx.doi.org/10.1016/s0168-9452(02)00248-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Elena, Santiago F., Guillermo P. Bernet, and José L. Carrasco. "The games plant viruses play." Current Opinion in Virology 8 (October 2014): 62–67. http://dx.doi.org/10.1016/j.coviro.2014.07.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Stussi-Garaud, Christiane, Anne-Marie Haeberle, Christophe Ritzenthaler, Odette Rohfritsch, and Genevieve Lebeurier. "Electron microscopy of plant viruses." Biology of the Cell 80, no. 2-3 (1994): 147–53. http://dx.doi.org/10.1111/j.1768-322x.1994.tb00924.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Campbell, R. N. "FUNGAL TRANSMISSION OF PLANT VIRUSES." Annual Review of Phytopathology 34, no. 1 (1996): 87–108. http://dx.doi.org/10.1146/annurev.phyto.34.1.87.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Bagni. "The Plant Viruses. Vol. 3." Bioelectrochemistry and Bioenergetics 21, no. 3 (1989): 383. http://dx.doi.org/10.1016/0302-4598(89)85019-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Mokra, V., B. Gotzova, J. Mertelik, and J. Polak. "COLLECTION OF ORNAMENTAL PLANT VIRUSES." Acta Horticulturae, no. 568 (January 2002): 193–99. http://dx.doi.org/10.17660/actahortic.2002.568.28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Fulton, J. P., R. C. Gergerich, and H. A. Scott. "Beetle Transmission of Plant Viruses." Annual Review of Phytopathology 25, no. 1 (1987): 111–23. http://dx.doi.org/10.1146/annurev.py.25.090187.000551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

García, Juan Antonio, and Carmen Simón-Mateo. "A micropunch against plant viruses." Nature Biotechnology 24, no. 11 (2006): 1358–59. http://dx.doi.org/10.1038/nbt1106-1358.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Simon, Anne E. "Satellite RNAs of plant viruses." Plant Molecular Biology Reporter 6, no. 4 (1988): 240–52. http://dx.doi.org/10.1007/bf02670384.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

STUSSIGARAUD, C. "Electron microscopy of plant viruses." Biology of the Cell 80, no. 2-3 (1994): 147–53. http://dx.doi.org/10.1016/0248-4900(94)90036-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Jones, David R. "Plant Viruses Transmitted by Thrips." European Journal of Plant Pathology 113, no. 2 (2005): 119–57. http://dx.doi.org/10.1007/s10658-005-2334-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Sáez, Cristina, and Israel Pagán. "Plant viruses traveling without passport." PLOS Biology 22, no. 5 (2024): e3002626. http://dx.doi.org/10.1371/journal.pbio.3002626.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

SCHOLTHOF, KAREN-BETH G., SCOTT ADKINS, HENRYK CZOSNEK, et al. "Top 10 plant viruses in molecular plant pathology." Molecular Plant Pathology 12, no. 9 (2011): 938–54. http://dx.doi.org/10.1111/j.1364-3703.2011.00752.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Kendall, Amy, Michele McDonald, Wen Bian, et al. "Structure of Flexible Filamentous Plant Viruses." Journal of Virology 82, no. 19 (2008): 9546–54. http://dx.doi.org/10.1128/jvi.00895-08.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTFlexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fo
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Zhang, Zhijun, Jiahui Zhang, Xiaowei Li, Jinming Zhang, Yunsheng Wang, and Yaobin Lu. "The Plant Virus Tomato Spotted Wilt Orthotospovirus Benefits Its Vector Frankliniella occidentalis by Decreasing Plant Toxic Alkaloids in Host Plant Datura stramonium." International Journal of Molecular Sciences 24, no. 19 (2023): 14493. http://dx.doi.org/10.3390/ijms241914493.

Der volle Inhalt der Quelle
Annotation:
The transmission of insect-borne viruses involves sophisticated interactions between viruses, host plants, and vectors. Chemical compounds play an important role in these interactions. Several studies reported that the plant virus tomato spotted wilt orthotospovirus (TSWV) increases host plant quality for its vector and benefits the vector thrips Frankliniella occidentalis. However, few studies have investigated the chemical ecology of thrips vectors, TSWV, and host plants. Here, we demonstrated that in TSWV-infected host plant Datura stramonium, (1) F. occidentalis were more attracted to feed
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

de Lillo, Enrico, Juliana Freitas-Astúa, Elliot Watanabe Kitajima, et al. "Phytophagous mites transmitting plant viruses: update and perspectives." Entomologia Generalis 41, no. 5 (2021): 439–62. http://dx.doi.org/10.1127/entomologia/2021/1283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Fuji, Shin-ichi, Tomofumi Mochizuki, Mitsuru Okuda, et al. "Plant viruses and viroids in Japan." Journal of General Plant Pathology 88, no. 2 (2022): 105–27. http://dx.doi.org/10.1007/s10327-022-01051-y.

Der volle Inhalt der Quelle
Annotation:
AbstractAn increasing number of plant viruses and viroids have been reported from all over the world due largely to metavirogenomics approaches with technological innovation. Herein, the official changes of virus taxonomy, including the establishment of megataxonomy and amendments of the codes of virus classification and nomenclature, recently made by the International Committee on Taxonomy of Viruses were summarized. The continued efforts of the plant virology community of Japan to index all plant viruses and viroids occurring in Japan, which represent 407 viruses, including 303 virus species
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Chen, Qian, and Taiyun Wei. "Cell Biology During Infection of Plant Viruses in Insect Vectors and Plant Hosts." Molecular Plant-Microbe Interactions® 33, no. 1 (2020): 18–25. http://dx.doi.org/10.1094/mpmi-07-19-0184-cr.

Der volle Inhalt der Quelle
Annotation:
Plant viruses typically cause severe pathogenicity in plants, even resulting in the death of plants. Many pathogenic plant viruses are transmitted in a persistent manner via insect vectors. Interestingly, unlike in the plant hosts, persistent viruses are either nonpathogenic or show limited pathogenicity in their insect vectors, while taking advantage of the cellular machinery of insect vectors for completing their life cycles. This review discusses why persistent plant viruses are nonpathogenic or have limited pathogenicity to their insect vectors while being pathogenic to plants hosts. Curre
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Tungadi, Trisna. "Aphids and plant viruses – friends or foe?" Biochemist 47, no. 3 (2025): 19–21. https://doi.org/10.1042/bio_2025_125.

Der volle Inhalt der Quelle
Annotation:
Plants are constantly challenged by various pathogens, including bacteria, viruses, fungi, and insect pests. In response, plants have remarkable ability to switch on and off their defense signalling mechanisms in response to their surrounding environment. Plant viruses affect many economically important crop plants and threaten global food security. A majority of plant viruses are transmitted (vectored) by insects such as aphids. Plant viruses can alter plant biochemistry, influencing insect vector fitness and feeding behaviour and affecting virus transmission. Understanding how plant viruses
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Tsuda, Shinya. "Plant viruses. Tomato spotted wilt tospovirus: Plant-infecting bunyaviridae." Uirusu 49, no. 2 (1999): 119–30. http://dx.doi.org/10.2222/jsv.49.119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

EBARA, YOSHIO. "Biophylaxis of plant.6.Resistance of plant to viruses." Kagaku To Seibutsu 28, no. 9 (1990): 615–24. http://dx.doi.org/10.1271/kagakutoseibutsu1962.28.615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

HIBI, Tadaaki. "Infection of Plant Protoplasts with Plant Viruses by Electromanipulation." Japanese Journal of Phytopathology 59, no. 3 (1993): 237–39. http://dx.doi.org/10.3186/jjphytopath.59.237.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!