Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Plasmoids“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Plasmoids" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Plasmoids"
Christie, I. M., M. Petropoulou, L. Sironi und D. Giannios. „Interplasmoid Compton scattering and the Compton dominance of BL Lacs“. Monthly Notices of the Royal Astronomical Society 492, Nr. 1 (09.12.2019): 549–55. http://dx.doi.org/10.1093/mnras/stz3265.
Der volle Inhalt der QuelleSuzuki, Y., T. H. Watanabe, A. Kageyama, T. Sato und T. Hayashi. „Three-Dimensional Simulation Study of Plasmoid Injection into Magnetized Plasma“. Symposium - International Astronomical Union 188 (1998): 209–10. http://dx.doi.org/10.1017/s0074180900114780.
Der volle Inhalt der QuelleHonkonen, I., M. Palmroth, T. I. Pulkkinen, P. Janhunen und A. Aikio. „On large plasmoid formation in a global magnetohydrodynamic simulation“. Annales Geophysicae 29, Nr. 1 (14.01.2011): 167–79. http://dx.doi.org/10.5194/angeo-29-167-2011.
Der volle Inhalt der QuellePatel, Ritesh, Vaibhav Pant, Kalugodu Chandrashekhar und Dipankar Banerjee. „A statistical study of plasmoids associated with a post-CME current sheet“. Astronomy & Astrophysics 644 (Dezember 2020): A158. http://dx.doi.org/10.1051/0004-6361/202039000.
Der volle Inhalt der QuelleLemaire, J. „Plasmoid motion across a tangential discontinuity (with application to the magnetopause)“. Journal of Plasma Physics 33, Nr. 3 (Juni 1985): 425–36. http://dx.doi.org/10.1017/s0022377800002592.
Der volle Inhalt der QuelleCerutti, Benoît, und Gwenael Giacinti. „Formation of giant plasmoids at the pulsar wind termination shock: A possible origin of the inner-ring knots in the Crab Nebula“. Astronomy & Astrophysics 656 (Dezember 2021): A91. http://dx.doi.org/10.1051/0004-6361/202142178.
Der volle Inhalt der QuelleMarkidis, S., P. Henri, G. Lapenta, A. Divin, M. V. Goldman, D. Newman und S. Eriksson. „Collisionless magnetic reconnection in a plasmoid chain“. Nonlinear Processes in Geophysics 19, Nr. 1 (27.02.2012): 145–53. http://dx.doi.org/10.5194/npg-19-145-2012.
Der volle Inhalt der QuelleDubowsky, Scott E., Amber N. Rose, Nick G. Glumac und Benjamin J. McCall. „Electrical Properties of Reversed-Polarity Ball Plasmoid Discharges“. Plasma 3, Nr. 3 (29.06.2020): 92–102. http://dx.doi.org/10.3390/plasma3030008.
Der volle Inhalt der QuelleDvornikov, M. „Stable Langmuir solitons in plasma with diatomic ions“. Nonlinear Processes in Geophysics 20, Nr. 4 (13.08.2013): 581–88. http://dx.doi.org/10.5194/npg-20-581-2013.
Der volle Inhalt der QuelleNathanail, Antonios, Christian M. Fromm, Oliver Porth, Hector Olivares, Ziri Younsi, Yosuke Mizuno und Luciano Rezzolla. „Plasmoid formation in global GRMHD simulations and AGN flares“. Monthly Notices of the Royal Astronomical Society 495, Nr. 2 (23.05.2020): 1549–65. http://dx.doi.org/10.1093/mnras/staa1165.
Der volle Inhalt der QuelleDissertationen zum Thema "Plasmoids"
Berger, T., J. Konheiser, A. V. Anikeev, V. V. Prikhodko, P. A. Bagryansky, E. Yu Kolesnikov, E. I. Soldatkina, Yu A. Tsidulko, K. Noack und A. A. Lizunov. „Study of high temperature and high density plasmoids in axially symmetrical magnetic fields“. Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-27870.
Der volle Inhalt der QuelleBerger, T., J. Konheiser, A. V. Anikeev, V. V. Prikhodko, P. A. Bagryansky, E. Yu Kolesnikov, E. I. Soldatkina, Yu A. Tsidulko, K. Noack und A. A. Lizunov. „Study of high temperature and high density plasmoids in axially symmetrical magnetic fields“. Forschungszentrum Dresden-Rossendorf, 2009. https://hzdr.qucosa.de/id/qucosa%3A21614.
Der volle Inhalt der QuelleGranier, Camille. „Nouveaux développements sur la théorie des instabilités des feuilles de courant dans les plasmas non-collisionels“. Electronic Thesis or Diss., Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4109.
Der volle Inhalt der QuelleMagnetic reconnection is a change of topology of the magnetic field, responsible for explosive release of magnetic energy in astrophysical plasmas, as in the case of magnetospheric substorms and coronal mass ejections, as well as in laboratory plasmas, which is the case of sawtooth crashes in tokamaks. In collisionless plasmas as, for instance, the magnetosphere and the solar wind, electron inertia becomes particularly relevant to drive reconnection at regions of intense localized current, denoted as current sheets. In these non-collisional environments, the temperature can often be anisotropic and effects at the electron scale on the reconnection process can become non-negligible.In this thesis, the stability of two-dimensional current sheets, with respect to reconnecting perturbations, in collisionless plasmas with a strong guide field is analysed on the basis of gyrofluid models assuming cold ions. These models can take into account an equilibrium temperature anisotropy,and a finite βe, a parameter corresponding to the ratio between equilibrium electron kinetic pressure and magnetic pressure.We derive and analyze a dispersion relation for the growth rate of collisionless tearing modes accounting for equilibrium electron temperature anisotropy. The analytical predictions are tested against numerical simulations, showing a very good quantitative agreement.In the isotropic case, accounting for finite βe effects, we observe a stabilization of the tearing growth rate when electron finite Larmor radius effects become relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects.We also investigate the marginal stability conditions of secondary current sheets, for the development of plasmoids, in collisionless plasmas. In the isotropic βe → 0 regime, we analyze the geometry that characterizes the reconnecting current sheet, and identify the conditions for which it is plasmoid unstable. Our study shows that plasmoids can be obtained, in this context, from current sheets with an aspect ratio much smaller than in the collisional regime. Furthermore, we investigate the plasmoid formation comparing gyrofluid and gyrokinetic simulations.This made it possible to show that the effect of finite βe, promotes the plasmoid instability. Finally, we study the impact of the closure applied on the moments, performed during the derivation of the gyrofluid model, on the distribution and conversion of energy during reconnection
La riconnessione magnetica è un cambiamento nella topologia delcampo magnetico, responsabile del rilascio esplosivo di energia magnetica nei plasmiastrofisici, come nelle tempeste magnetosferiche e nelle espulsioni di massa coronale,nonché nei plasmi di laboratorio, come nel caso delle oscillazioni a dente di sega neitokamak. Nei plasmi non-collisionali come, ad esempio, la magnetosfera e il vento solare,l’inerzia elettronica diventa particolarmente efficace nel causare la riconnessionein regioni di corrente intensa e localizzata, detti strati di corrente. In tali plasmi noncollisionali,la temperatura può essere spesso anisotropa e gli effetti su scala elettronicasul processo di riconnessione possono diventare non trascurabili.In questa tesi, viene analizzata la stabilità di strati di corrente bidimensionali inplasmi non-collisionali con un forte campo guida, sulla base di modelli girofluidi cheassumono ioni freddi. Questi modelli possono tenere conto di un’anisotropia di temperaturadi equilibrio e di un βe finito. Quest’ultimo è un parametro corrispondente alrapporto tra la pressione cinetica elettronica di equilibrio e la pressione magnetica.Deriviamo e analizziamo una relazione di dispersione per il tasso di crescita dei moditearing non-collisionali tenendo conto dell’anisotropia della temperatura di equilibriodegli elettroni. Le previsioni analitiche sono verificate mediante simulazioni numeriche,che mostrano un ottimo accordo quantitativo. Nel caso isotropico, tenendoconto degli effetti di βe finito, si osserva una stabilizzazione del tasso di crescita delmodo tearing quando diventano rilevanti gli effetti del raggio finito di Larmor deglielettroni. Nella fase non lineare si osservano fasi di decelerazione e fasi di accelerazione,simili a quanto avviene in presenza di effetti del raggio di Larmor finito ionico.Studiamo anche le condizioni di stabilità marginale degli strati di corrente secondaria,per lo sviluppo di plasmoidi, in plasmi senza collisioni. Nel regime isotropicocon βe → 0, analizziamo la geometria che caratterizza lo strato di corrente e identifichiamole condizioni in cui esso diventa instabile a causa di un’instabilità che generaplasmoidi. Il nostro studio mostra che i plasmoidi possono essere ottenuti, in questocontesto, da strati di corrente aventi un rapporto d’aspetto molto più piccolo rispettoal regime collisionale. Inoltre, studiamo la formazione di plasmoidi confrontando simulazionigirofluidi e girocinetiche. Ciò ha permesso di dimostrare che l’effetto di βe promuove l’instabilità che genera plasmoidi. Infine, si studia l’impatto della chiusuraapplicata ai momenti, eseguita durante la derivazione del modello girofluido, sulla distribuzionee conversione dell’energia durante la riconnessione
Hörbe, Mario Robert [Verfasser], Julia [Gutachter] Tjus und Garret [Gutachter] Cotter. „High-energy particle emission from plasmoids in jets of active galactic nuclei / Mario Robert Hörbe ; Gutachter: Julia Tjus, Garret Cotter ; Fakultät für Physik und Astronomie“. Bochum : Ruhr-Universität Bochum, 2020. http://d-nb.info/1233484176/34.
Der volle Inhalt der QuelleLin, Ling. „Optical Manipulation Using Planar/Patterned Metallo-dielectric Multilayer Structures“. Thesis, University of Canterbury. Electrical and Computer Engineering, 2008. http://hdl.handle.net/10092/1249.
Der volle Inhalt der QuelleKurth, Martin L. „Plasmonic nanofocusing and guiding structures for nano-optical sensor technology“. Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/118670/1/Martin_Kurth_Thesis.pdf.
Der volle Inhalt der QuelleConstant, Thomas J. „Optical excitation of surface plasmon polaritons on novel bigratings“. Thesis, University of Exeter, 2013. http://hdl.handle.net/10871/9001.
Der volle Inhalt der QuelleLoiselet, Ophelliam. „Synthèse et caractérisation d’agrégats bimétalliques pour la magnéto-plasmonique“. Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1033/document.
Der volle Inhalt der QuelleFor several years condensed matter physicists have been interested in the optical and magnetic properties of metallic nanoparticles. Two properties remain largely studied: localized plasmon resonances and magnetic anisotropy at the nanoscale. These two effects resulting from very different electronic properties which are usually encountered in separate nanosystems. Since the 2000's, studies have shown that it is possible to benefit from these two characteristics in a single nanometric system. In this thesis, we will focus on the combination of magnetic and plasmonic properties in systems of size less than ten nanometers: bimetallic clusters of CoAg and CoAu synthesized physically under ultrahigh vacuum and embedded in a matrix (alumina and carbon). We will study the structure of these bimetallic clusters of different stoichiometries and the effect of their environment through the investigation of their optical, magnetic and electronic properties (by electron energy loss spectroscopy (EELS) on individual particles ). We will show the effect of the matrix, carbon or alumina, on the structure of the clusters as well as on their magnetic properties (moment by cluster, anisotropy). In optics we will also see the importance of stoichiometry between noble metal and cobalt on the phenomena of the damping and shifting of the plasmon resonance. Finally we will show the spatial distribution of surface plasmons on single particles by STEM-EELS measurements
Nagaraj, Nagaraj. „Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves“. Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc115126/.
Der volle Inhalt der QuelleHettiarachchige, Chamanei Sandamali P. „The interaction of quantum dots with plasmons supported by metal waveguides“. Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/92278/1/Chamanei%20Sandamali_Hettiarachchige_Thesis.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Plasmoids"
Enoch, Stefan, und Nicolas Bonod, Hrsg. Plasmonics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28079-5.
Der volle Inhalt der QuelleFritzsche, Wolfgang, und Marc Lamy de la Chapelle, Hrsg. Molecular Plasmonics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527649686.
Der volle Inhalt der QuelleBozhevolnyi, Sergey I., Luis Martin-Moreno und Francisco Garcia-Vidal, Hrsg. Quantum Plasmonics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45820-5.
Der volle Inhalt der QuelleGric, Tatjana. Spoof Plasmons. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-02023-0.
Der volle Inhalt der QuelleFedeli, Luca. High Field Plasmonics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44290-7.
Der volle Inhalt der QuelleBecker, Jan. Plasmons as Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31241-0.
Der volle Inhalt der Quelleservice), SpringerLink (Online, Hrsg. Plasmons as Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenTanabe, Katsuaki. Plasmonics for Hydrogen Energy. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88275-4.
Der volle Inhalt der QuelleGeddes, Chris D., Hrsg. Reviews in Plasmonics 2016. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48081-7.
Der volle Inhalt der QuelleGeddes, Chris D., Hrsg. Reviews in Plasmonics 2017. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18834-4.
Der volle Inhalt der QuelleBuchteile zum Thema "Plasmoids"
Moynihan, Matthew, und Alfred B. Bortz. „Plasmoids“. In Fusion's Promise, 153–74. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22906-0_7.
Der volle Inhalt der QuelleKlimov, A. I. „Vortex Plasmoids Created by High-Frequency Discharges“. In The Atmosphere and Ionosphere, 251–73. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2914-8_6.
Der volle Inhalt der QuelleMoldwin, Mark B., und W. J. Hughes. „A 2½-dimensional magnetic field model of plasmoids“. In Physics of Magnetic Flux Ropes, 663–68. Washington, D. C.: American Geophysical Union, 1990. http://dx.doi.org/10.1029/gm058p0663.
Der volle Inhalt der QuelleHesse, Michael, und Joachim Birn. „Progress in the Study of Three-Dimensional Plasmoids“. In Geophysical Monograph Series, 55–70. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm062p0055.
Der volle Inhalt der QuelleScholer, M., und R. F. Lottermoser. „Hybrid Simulations of Magnetotail Reconnection: Plasmoids, the Post-Plasmoid Plasma Sheet, and Slow Mode Shocks“. In Substorms-4, 467–72. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4798-9_97.
Der volle Inhalt der QuelleRocca, Mario. „Surface Plasmons and Plasmonics“. In Springer Handbook of Surface Science, 531–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46906-1_18.
Der volle Inhalt der QuelleKarlický, Marian, und Miroslav Bárta. „Plasmoids in Solar Flares and Their Radio and X-ray Signatures“. In Multi-scale Dynamical Processes in Space and Astrophysical Plasmas, 49–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30442-2_6.
Der volle Inhalt der QuelleMukai, T., T. Yamamoto und S. Machida. „Dynamics and Kinetic Properties of Plasmoids and Flux Ropes: GEOTAIL Observations“. In New Perspectives on the Earth's Magnetotail, 117–37. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm105p0117.
Der volle Inhalt der QuelleKumar Raghuwanshi, Sanjeev, Santosh Kumar und Yadvendra Singh. „Introduction of Plasmons and Plasmonics“. In 2D Materials for Surface Plasmon Resonance-based Sensors, 1–40. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003190738-1.
Der volle Inhalt der QuelleMullan, D. J. „Coronal Heating by Nanoflares: Possible Evidence of Plasmoids in Radio Occultation Data“. In Mechanisms of Chromospheric and Coronal Heating, 637–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_107.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Plasmoids"
Kadish, A., R. A. Nebel, W. R. Shanahan und P. Rosenau. „Plasmoids For Exoatmospheric Propagation“. In 1988 Los Angeles Symposium--O-E/LASE '88, herausgegeben von Norman Rostoker. SPIE, 1988. http://dx.doi.org/10.1117/12.965106.
Der volle Inhalt der QuellePopov, G., M. Orlov, N. Antropov, L. Gomilka, G. Diakonov, I. Krivonosov, G. Popov et al. „Parameters of plasmoids injected by PPT“. In 33rd Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2921.
Der volle Inhalt der QuelleChristie, Ian, Maria Petropoulou, Lorenzo Sironi und Dimitrios Giannios. „Blazar Variability from Plasmoids in Relativistic Reconnection“. In 7th International Fermi Symposium. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.312.0040.
Der volle Inhalt der QuelleNoack, S., A. Versteegh, B. Jüttner, G. Fussmann, Hans-Jürgen Hartfuss, Michel Dudeck, Jozef Musielok und Marek J. Sadowski. „Analysis of Long-living Plasmoids at Atmospheric Pressure“. In PLASMA 2007: International Conference on Research and Applications of Plasmas; 4th German-Polish Conference on Plasma Diagnostics for Fusion and Applications; 6th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2008. http://dx.doi.org/10.1063/1.2909094.
Der volle Inhalt der QuelleMullan, D. J. „Acceleration of the solar wind: effects of plasmoids“. In Scientific basis for robotic exploration close to the sun. AIP, 1997. http://dx.doi.org/10.1063/1.51745.
Der volle Inhalt der QuelleYun-Tung Lau und John M. Finn. „Three-dimensional kinematic reconnection of plasmoids with nulls“. In Electromechanical Coupling of the Solar Atmosphere. AIP, 1992. http://dx.doi.org/10.1063/1.42878.
Der volle Inhalt der QuelleFedun, Victor. „OBTAINING OF VORTEX PLASMOIDS USING A PULSED ELECTROTHERMAL ACCELERATOR“. In WISSENSCHAFTLICHE ERGEBNISSE UND ERRUNGENSCHAFTEN: 2020. European Scientific Platform, 2020. http://dx.doi.org/10.36074/25.12.2020.v2.01.
Der volle Inhalt der QuelleKossyi, Igor, N. Berezhetskaya, S. Gritsinin, V. Kop'ev, Valerii Silakov, Natalya Tarasova und David Wie. „Long-Lived Plasmoids as Initiators of Combustion in Gas Mixtures“. In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-836.
Der volle Inhalt der QuelleSlough, John. „Nuclear Propulsion based on Inductively Driven Liner Compression of Fusion Plasmoids“. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-961.
Der volle Inhalt der QuelleYang, Liping, Lei Zhang, Jiansen He, Hardi Peter, Chuanyi Tu, Linghua Wang und Xueshang Feng. „Excitation of magnetohydrodynamic waves by plasmoids ejection in the solar corona“. In VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4943833.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Plasmoids"
Samtaney, R., N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin und S. C. Cowley. Formation of Plasmoid Chains in Magnetic Reconnection. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/965277.
Der volle Inhalt der QuelleHasselbeck, M. P., L. A. Schlie und D. Stalnaker. Coherent Plasmons in InSb. Fort Belvoir, VA: Defense Technical Information Center, Januar 2004. http://dx.doi.org/10.21236/ada430825.
Der volle Inhalt der QuelleAtwater, Harry A. Active Plasmonics, Option 3 Report. Fort Belvoir, VA: Defense Technical Information Center, März 2010. http://dx.doi.org/10.21236/ada528631.
Der volle Inhalt der QuelleChang, A. Plasmonics-Enhanced Photocatalysis for Water Decontamination. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1573141.
Der volle Inhalt der QuelleIntrator, Thomas P. Magnetized shock studies for astrophysics using a plasmoid accelerator. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1090687.
Der volle Inhalt der QuelleCampbell, M. M., R. M. Clark und M. A. Mostrom. Simulation and theory of radial equilibrium of plasmoid propagation. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/6607601.
Der volle Inhalt der QuelleBrandenburg, John, Gary Warren und Richard Worl. The Theory and Simulation of Plasmoid Formation and Propagation. Fort Belvoir, VA: Defense Technical Information Center, Januar 1990. http://dx.doi.org/10.21236/ada222048.
Der volle Inhalt der QuelleBabicheva, Viktoriia. Emerging Materials for Plasmonics, Metamaterials and Metasurfaces. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1561108.
Der volle Inhalt der QuelleCarpenter, Michael. Plasmonics Based Harsh Environment Compatible Chemical Sensors. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1051510.
Der volle Inhalt der QuelleBerezhiani, V. I., und S. M. Mahajan. Beat-wave generation of plasmons in semiconductor plasmas. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/108115.
Der volle Inhalt der Quelle