Zeitschriftenartikel zum Thema „PLUMBAGIN PRODUCTION“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "PLUMBAGIN PRODUCTION" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Paiva, Selma R., Lucilene A. Lima, Maria Raquel Figueiredo und Maria Auxiliadora C. Kaplan. „Chemical composition fluctuations in roots of Plumbago scandens L. in relation to floral development“. Anais da Academia Brasileira de Ciências 83, Nr. 4 (Dezember 2011): 1165–70. http://dx.doi.org/10.1590/s0001-37652011000400004.
Der volle Inhalt der QuelleSakamoto, Seiichi, Waraporn Putalun, Benyakan Pongkitwitoon, Thaweesak Juengwatanatrakul, Yukihiro Shoyama, Hiroyuki Tanaka und Satoshi Morimoto. „Modulation of plumbagin production in Plumbago zeylanica using a single-chain variable fragment antibody against plumbagin“. Plant Cell Reports 31, Nr. 1 (11.09.2011): 103–10. http://dx.doi.org/10.1007/s00299-011-1143-6.
Der volle Inhalt der QuelleGangopadhyay, Moumita, Saikat Dewanjee und Sabita Bhattacharya. „Enhanced plumbagin production in elicited Plumbago indica hairy root cultures“. Journal of Bioscience and Bioengineering 111, Nr. 6 (Juni 2011): 706–10. http://dx.doi.org/10.1016/j.jbiosc.2011.02.003.
Der volle Inhalt der QuelleGangopadhyay, Moumita, Saikat Dewanjee, Somnath Bhattacharyya und Sabita Bhattacharya. „Effect of Different Strains of Agrobacterium rhizogenes and Nature of Explants on Plumbago indica Hairy Root Culture with Special Emphasis on Root Biomass and Plumbagin Production“. Natural Product Communications 5, Nr. 12 (Dezember 2010): 1934578X1000501. http://dx.doi.org/10.1177/1934578x1000501215.
Der volle Inhalt der QuelleBeigmohammadi, Mina, Ali Movafeghi, Ali Sharafi, Samineh Jafari und Hossein Danafar. „Cell Suspension Culture of Plumbago europaea L. Towards Production of Plumbagin“. Iranian Journal of Biotechnology 17, Nr. 2 (01.06.2019): 46–54. http://dx.doi.org/10.21859/ijb.2169.
Der volle Inhalt der QuelleBeigmohamadi, Mina, Ali Movafeghi, Samineh Jafari und Ali Sharafi. „Efficient in vitro organogenesis, micropropagation, and plumbagin production in Plumbago europaea L.“ In Vitro Cellular & Developmental Biology - Plant 57, Nr. 5 (28.09.2021): 820–30. http://dx.doi.org/10.1007/s11627-021-10224-x.
Der volle Inhalt der QuelleKomaraiah, P., R. Naga Amrutha, P. B. Kavi Kishor und S. V. Ramakrishna. „Elicitor enhanced production of plumbagin in suspension cultures of Plumbago rosea L.“ Enzyme and Microbial Technology 31, Nr. 5 (Oktober 2002): 634–39. http://dx.doi.org/10.1016/s0141-0229(02)00159-x.
Der volle Inhalt der QuelleRoy, Arpita, und Navneeta Bharadvaja. „Establishment of root suspension culture of Plumbago zeylanica and enhanced production of plumbagin“. Industrial Crops and Products 137 (Oktober 2019): 419–27. http://dx.doi.org/10.1016/j.indcrop.2019.05.007.
Der volle Inhalt der QuelleChrastina, Adrian, John Welsh, Per Borgström und Veronique T. Baron. „Propylene Glycol Caprylate-Based Nanoemulsion Formulation of Plumbagin: Development and Characterization of Anticancer Activity“. BioMed Research International 2022 (10.01.2022): 1–9. http://dx.doi.org/10.1155/2022/3549061.
Der volle Inhalt der QuelleLi, Guiyu, Yue Peng, Tiejian Zhao, Jiyong Lin, Xuelin Duan, Yanfei Wei und Jing Ma. „Plumbagin Alleviates Capillarization of Hepatic Sinusoids In Vitro by Downregulating ET-1, VEGF, LN, and Type IV Collagen“. BioMed Research International 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/5603216.
Der volle Inhalt der QuelleBisso, Borel Ndezo, Alvine Lonkeng Makuété, Joël Ulrich Tsopmene und Jean Paul Dzoyem. „Biofilm Formation and Phospholipase and Proteinase Production in Cryptococcus neoformans Clinical Isolates and Susceptibility towards Some Bioactive Natural Products“. Scientific World Journal 2023 (31.03.2023): 1–7. http://dx.doi.org/10.1155/2023/6080489.
Der volle Inhalt der QuelleMajiene, Daiva, Jolita Kuseliauskyte, Arturas Stimbirys und Aiste Jekabsone. „Comparison of the Effect of Native 1,4-Naphthoquinones Plumbagin, Menadione, and Lawsone on Viability, Redox Status, and Mitochondrial Functions of C6 Glioblastoma Cells“. Nutrients 11, Nr. 6 (07.06.2019): 1294. http://dx.doi.org/10.3390/nu11061294.
Der volle Inhalt der QuelleBeigmohamadi, Mina, Ali Movafeghi, Samineh Jafari und Ali Sharafi. „Correction to: Efficient in vitro organogenesis, micropropagation, and plumbagin production in Plumbago europaea L.“ In Vitro Cellular & Developmental Biology - Plant 58, Nr. 2 (23.11.2021): 330. http://dx.doi.org/10.1007/s11627-021-10238-5.
Der volle Inhalt der QuelleJaisi, Amit, und Pharkphoom Panichayupakaranant. „Increased production of plumbagin in Plumbago indica root cultures by biotic and abiotic elicitors“. Biotechnology Letters 38, Nr. 2 (01.10.2015): 351–55. http://dx.doi.org/10.1007/s10529-015-1969-z.
Der volle Inhalt der QuelleNayak, Pranati, Mukesh Sharma, Sailesh N. Behera, Manikkannan Thirunavoukkarasu und Pradeep K. Chand. „High-Performance Liquid Chromatographic Quantification of Plumbagin from Transformed Rhizoclones of Plumbago zeylanica L.: Inter-Clonal Variation in Biomass Growth and Plumbagin Production“. Applied Biochemistry and Biotechnology 175, Nr. 3 (26.11.2014): 1745–70. http://dx.doi.org/10.1007/s12010-014-1392-2.
Der volle Inhalt der QuelleBasu, Amrita, Raj Kumar Joshi und Sumita Jha. „Genetic Transformation of Plumbago zeylanica with Agrobacterium rhizogenes Strain LBA 9402 and Characterization of Transformed Root Lines“. Plant Tissue Culture and Biotechnology 25, Nr. 1 (09.07.2015): 21–35. http://dx.doi.org/10.3329/ptcb.v25i1.24123.
Der volle Inhalt der QuelleJoshi, N. K., und F. Sehnal. „Inhibition of ecdysteroid production by plumbagin in Dysdercus cingulatus“. Journal of Insect Physiology 35, Nr. 10 (Januar 1989): 737–41. http://dx.doi.org/10.1016/0022-1910(89)90130-3.
Der volle Inhalt der QuelleKomaraiah, P., S. V. Ramakrishna, P. Reddanna und P. B. Kavi Kishor. „Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption“. Journal of Biotechnology 101, Nr. 2 (März 2003): 181–87. http://dx.doi.org/10.1016/s0168-1656(02)00338-3.
Der volle Inhalt der QuelleJaisi, Amit, und Pharkphoom Panichayupakaranant. „Enhanced plumbagin production in Plumbago indica root cultures by ʟ-alanine feeding and in situ adsorption“. Plant Cell, Tissue and Organ Culture (PCTOC) 129, Nr. 1 (27.12.2016): 53–60. http://dx.doi.org/10.1007/s11240-016-1155-6.
Der volle Inhalt der QuelleSilja, P. K., und K. Satheeshkumar. „Establishment of adventitious root cultures from leaf explants of Plumbago rosea and enhanced plumbagin production through elicitation“. Industrial Crops and Products 76 (Dezember 2015): 479–86. http://dx.doi.org/10.1016/j.indcrop.2015.07.021.
Der volle Inhalt der QuelleRoy, Arpita, und Navneeta Bharadvaja. „Biotechnological Approaches for the Production of Pharmaceutically Important Compound: Plumbagin“. Current Pharmaceutical Biotechnology 19, Nr. 5 (20.08.2018): 372–81. http://dx.doi.org/10.2174/1389201019666180629143842.
Der volle Inhalt der QuelleKomaraiah, P., C. Jogeswar, S. V. Ramakrishna und P. B. Kavi Kishor. „Acetylsalicylic acid and ammonium-induced somatic embryogenesis and enhanced plumbagin production in suspension cultures of Plumbago rosea L.“ In Vitro Cellular & Developmental Biology - Plant 40, Nr. 2 (März 2004): 230–34. http://dx.doi.org/10.1079/ivp2003502.
Der volle Inhalt der QuelleJaisi, A., A. Sakunphueak und P. Panichayupakaranant. „Increased production of plumbagin inPlumbago indicaroot cultures by gamma ray irradiation“. Pharmaceutical Biology 51, Nr. 8 (07.06.2013): 1047–51. http://dx.doi.org/10.3109/13880209.2013.775163.
Der volle Inhalt der QuelleNahálka, Jozef, Peter Blanárik, Peter Gemeiner, Eva Matúsǒvá und Ivana Partlová. „Production of plumbagin by cell suspension cultures of Drosophyllum lusitanicum Link.“ Journal of Biotechnology 49, Nr. 1-3 (August 1996): 153–61. http://dx.doi.org/10.1016/0168-1656(96)01537-4.
Der volle Inhalt der QuelleHuang, Hang, Hui Xie, Yue Pan, Kewen Zheng, Yiqun Xia und Wei Chen. „Plumbagin Triggers ER Stress-Mediated Apoptosis in Prostate Cancer Cells via Induction of ROS“. Cellular Physiology and Biochemistry 45, Nr. 1 (2018): 267–80. http://dx.doi.org/10.1159/000486773.
Der volle Inhalt der QuelleSingh, Tikkam, Upasana Sharma und Veena Agrawal. „Isolation and optimization of plumbagin production in root callus of Plumbago zeylanica L. augmented with chitosan and yeast extract“. Industrial Crops and Products 151 (September 2020): 112446. http://dx.doi.org/10.1016/j.indcrop.2020.112446.
Der volle Inhalt der QuelleMartin, Kottackal Poulose, Aneta Sabovljevic und Joseph Madassery. „High-frequency transgenic plant regeneration and plumbagin production through methyl jasmonate elicitation from hairy roots of Plumbago indica L.“ Journal of Crop Science and Biotechnology 14, Nr. 3 (September 2011): 205–12. http://dx.doi.org/10.1007/s12892-010-0123-7.
Der volle Inhalt der QuelleGuida, Marianna, Tullia Maraldi, Elisa Resca, Francesca Beretti, Manuela Zavatti, Laura Bertoni, Giovanni B. La Sala und Anto De Pol. „Inhibition of Nuclear Nox4 Activity by Plumbagin: Effect on Proliferative Capacity in Human Amniotic Stem Cells“. Oxidative Medicine and Cellular Longevity 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/680816.
Der volle Inhalt der QuellePutalun, Waraporn, Orapin Udomsin, Gorawit Yusakul, Thaweesak Juengwatanatrakul, Seiichi Sakamoto und Hiroyuki Tanaka. „Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation“. Biotechnology Letters 32, Nr. 5 (29.01.2010): 721–24. http://dx.doi.org/10.1007/s10529-010-0202-3.
Der volle Inhalt der QuelleChang, Hung-Chi, Chia-Yung Lu, Chia-Chen Chen, Chao-Lin Kuo, Hsin-Sheng Tsay und Dinesh Chandra Agrawal. „Plumbagin, a Plant-derived Naphthoquinone Production in Tissue Cultures of Drosera spatulata Labill“. Biotechnology(Faisalabad) 18, Nr. 1 (15.12.2018): 24–31. http://dx.doi.org/10.3923/biotech.2019.24.31.
Der volle Inhalt der QuelleJaisi, Amit, und Pharkphoom Panichayupakaranant. „Simultaneous heat shock and in situ adsorption enhance plumbagin production inPlumbago indicaroot cultures“. Engineering in Life Sciences 16, Nr. 5 (01.04.2016): 417–23. http://dx.doi.org/10.1002/elsc.201500137.
Der volle Inhalt der QuelleJaisi, Amit, und Pharkphoom Panichayupakaranant. „Chitosan elicitation and sequential Diaion® HP-20 addition a powerful approach for enhanced plumbagin production in Plumbago indica root cultures“. Process Biochemistry 53 (Februar 2017): 210–15. http://dx.doi.org/10.1016/j.procbio.2016.11.027.
Der volle Inhalt der QuelleZhang, Haoran, Aijun Zhang, Anisha A. Gupte und Dale J. Hamilton. „Plumbagin Elicits Cell-Specific Cytotoxic Effects and Metabolic Responses in Melanoma Cells“. Pharmaceutics 13, Nr. 5 (12.05.2021): 706. http://dx.doi.org/10.3390/pharmaceutics13050706.
Der volle Inhalt der QuelleJose, Binoy, Silja P. K, Dhanya B. Pillai und Satheeshkumar K. „In vitro cultivation of hairy roots of Plumbago rosea L. in a customized Reaction kettle for the production of plumbagin—An anticancer compound“. Industrial Crops and Products 87 (September 2016): 89–95. http://dx.doi.org/10.1016/j.indcrop.2016.04.023.
Der volle Inhalt der QuelleEscobedo-González, René Gerardo, Héctor Pérez Martínez, Ma Inés Nicolás-Vázquez, Joel Martínez, Gabriela Gómez, Juan Nava Serrano, Vladimir Carranza Téllez, C. L. Vargas-Requena und René Miranda Ruvalcaba. „Green Production of Indolylquinones, Derivatives of Perezone, and Related Molecules, Promising Antineoplastic Compounds“. Journal of Chemistry 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/3870529.
Der volle Inhalt der QuelleQuach, Phuong Ngo Diem, Minh Thi Thanh Hoang, Thu Thi Hoang und Le Van Bui. „CALLUS AND CELL SUSPENSION CULTURE OF DROSERA BURMANNI VAHL FOR QUINONE PRODUCTION“. Science and Technology Development Journal 13, Nr. 2 (30.06.2010): 53–61. http://dx.doi.org/10.32508/stdj.v13i2.2126.
Der volle Inhalt der QuelleKumar, Ashwani, Annu Kumari, Pratibha Demiwal, Partha Roy und Debabrata Sircar. „Enhanced production of bioactive plumbagin in hairy root cultures and adventitious root cultures of Plumbago zeylanica L. by a novel apocarotenoid elicitor, α-ionone“. Industrial Crops and Products 203 (November 2023): 117140. http://dx.doi.org/10.1016/j.indcrop.2023.117140.
Der volle Inhalt der QuelleMakowski, Wojciech, Aleksandra Królicka, Anna Nowicka, Jana Zwyrtková, Barbara Tokarz, Ales Pecinka, Rafał Banasiuk und Krzysztof Michał Tokarz. „Transformed tissue of Dionaea muscipula J. Ellis as a source of biologically active phenolic compounds with bactericidal properties“. Applied Microbiology and Biotechnology 105, Nr. 3 (15.01.2021): 1215–26. http://dx.doi.org/10.1007/s00253-021-11101-8.
Der volle Inhalt der QuelleKunakhonnuruk, Boworn, Anupan Kongbangkerd und Phithak Inthima. „Improving large-scale biomass and plumbagin production of Drosera communis A.St.-Hil. by temporary immersion system“. Industrial Crops and Products 137 (Oktober 2019): 197–202. http://dx.doi.org/10.1016/j.indcrop.2019.05.039.
Der volle Inhalt der QuelleRossary, Adrien, Khelifa Arab und Jean-Paul Steghens. „Polyunsaturated fatty acids modulate NOX 4 anion superoxide production in human fibroblasts“. Biochemical Journal 406, Nr. 1 (26.07.2007): 77–83. http://dx.doi.org/10.1042/bj20061009.
Der volle Inhalt der QuelleKuropakornpong, Pranporn, Arunporn Itharat, Sumalee Panthong, Seewaboon Sireeratawong und Buncha Ooraikul. „In Vitro and In Vivo Anti-Inflammatory Activities of Benjakul: A Potential Medicinal Product from Thai Traditional Medicine“. Evidence-Based Complementary and Alternative Medicine 2020 (14.07.2020): 1–8. http://dx.doi.org/10.1155/2020/9760948.
Der volle Inhalt der QuelleWang, Huafeng, Huan Zhang, Yuqing Zhang, Dan Wang, Xixi Cheng, Fengrui Yang, Qi Zhang et al. „Plumbagin protects liver against fulminant hepatic failure and chronic liver fibrosis via inhibiting inflammation and collagen production“. Oncotarget 7, Nr. 50 (14.10.2016): 82864–75. http://dx.doi.org/10.18632/oncotarget.12655.
Der volle Inhalt der QuelleBoonsnongcheep, Panitch, Worapol Sae-foo, Kanpawee Banpakoat, Suwaphat Channarong, Sukanda Chitsaithan, Pornpimon Uafua, Wattika Putha, Kanchanok Kerdsiri und Waraporn Putalun. „Artificial color light sources and precursor feeding enhance plumbagin production of the carnivorous plants Drosera burmannii and Drosera indica“. Journal of Photochemistry and Photobiology B: Biology 199 (Oktober 2019): 111628. http://dx.doi.org/10.1016/j.jphotobiol.2019.111628.
Der volle Inhalt der QuelleOlson, Kenneth R., Kasey J. Clear, Yan Gao, Zhilin Ma, Nathaniel M. Cieplik, Alyssa R. Fiume, Dominic J. Gaziano et al. „Redox and Nucleophilic Reactions of Naphthoquinones with Small Thiols and Their Effects on Oxidization of H2S to Inorganic and Organic Hydropolysulfides and Thiosulfate“. International Journal of Molecular Sciences 24, Nr. 8 (19.04.2023): 7516. http://dx.doi.org/10.3390/ijms24087516.
Der volle Inhalt der QuelleXue, Danfeng, Shu-Ting Pan, Xiongming Zhou, Fangfei Ye, Qun Zhou, Fanzhe Shi, Fei He, Hui Yu und Jiaxuan Qiu. „Plumbagin Enhances the Anticancer Efficacy of Cisplatin by Increasing Intracellular ROS in Human Tongue Squamous Cell Carcinoma“. Oxidative Medicine and Cellular Longevity 2020 (26.03.2020): 1–21. http://dx.doi.org/10.1155/2020/5649174.
Der volle Inhalt der QuelleVattanaviboon, Paiboon, Wirongrong Whangsuk und Skorn Mongkolsuk. „A Suppressor of the Menadione-Hypersensitive Phenotype of a Xanthomonas campestris pv. phaseoli oxyR Mutant Reveals a Novel Mechanism of Toxicity and the Protective Role of Alkyl Hydroperoxide Reductase“. Journal of Bacteriology 185, Nr. 5 (01.03.2003): 1734–38. http://dx.doi.org/10.1128/jb.185.5.1734-1738.2003.
Der volle Inhalt der QuelleOlson, Kenneth R., Kasey J. Clear, Paul J. Derry, Yan Gao, Zhilin Ma, Nathaniel M. Cieplik, Alyssa Fiume et al. „Naphthoquinones Oxidize H2S to Polysulfides and Thiosulfate, Implications for Therapeutic Applications“. International Journal of Molecular Sciences 23, Nr. 21 (31.10.2022): 13293. http://dx.doi.org/10.3390/ijms232113293.
Der volle Inhalt der QuelleMarkadieu, Nicolas, Raphaël Crutzen, Alain Boom, Christophe Erneux und Renaud Beauwens. „Inhibition of insulin-stimulated hydrogen peroxide production prevents stimulation of sodium transport in A6 cell monolayers“. American Journal of Physiology-Renal Physiology 296, Nr. 6 (Juni 2009): F1428—F1438. http://dx.doi.org/10.1152/ajprenal.90397.2008.
Der volle Inhalt der QuelleMcKallip, Robert J., Catherine Lombard, Jingping Sun und Rupal Ramakrishnan. „Plumbagin-induced apoptosis in lymphocytes is mediated through increased reactive oxygen species production, upregulation of Fas, and activation of the caspase cascade“. Toxicology and Applied Pharmacology 247, Nr. 1 (August 2010): 41–52. http://dx.doi.org/10.1016/j.taap.2010.05.013.
Der volle Inhalt der QuelleSingh, Sukhbir, Neelam Sharma, Saurabh Shukla, Tapan Behl, Sumeet Gupta, Md Khalid Anwer, Celia Vargas-De-La-Cruz, Simona Gabriela Bungau und Cristina Brisc. „Understanding the Potential Role of Nanotechnology in Liver Fibrosis: A Paradigm in Therapeutics“. Molecules 28, Nr. 6 (20.03.2023): 2811. http://dx.doi.org/10.3390/molecules28062811.
Der volle Inhalt der Quelle