Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Polystyrene nanoparticle“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Polystyrene nanoparticle" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Polystyrene nanoparticle"
Fang, Jingyue, Xinxing Li, Wenke Xie und Kehui Sun. „A Novel Fabrication of Single Electron Transistor from Patterned Gold Nanoparticle Array Template-Prepared by Polystyrene Nanospheres“. Nanomaterials 12, Nr. 18 (07.09.2022): 3102. http://dx.doi.org/10.3390/nano12183102.
Der volle Inhalt der QuelleKhan, Madihah, Alyxandra Thiessen, I. Teng Cheong, Sarah Milliken und Jonathan G. C. Veinot. „Investigation of Silicon Nanoparticle-Polystyrene Hybrids“. Alberta Academic Review 2, Nr. 2 (15.09.2019): 49–50. http://dx.doi.org/10.29173/aar60.
Der volle Inhalt der QuelleKim, Sanghee, Jaetae Seo, Roopchan Ramdon, Hyeon-Bong Pyo, Kyuho Song und Byoung Hun Kang. „Solid-Phase Immunoassay of Polystyrene-Encapsulated Semiconductor Coreshells for Cardiac Marker Detection“. Journal of Nanomaterials 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/693575.
Der volle Inhalt der QuelleSabo, Y. T., D. E. Boryo, I. Y. Chindo und A. I. Habib. „Nanocomposites Transformed from Polystyrene Waste/Antimony, Barium and Nickel Oxides Nanoparticles with Improved Mechanical Properties“. Journal of Applied Sciences and Environmental Management 25, Nr. 11 (10.02.2022): 1921–25. http://dx.doi.org/10.4314/jasem.v25i11.11.
Der volle Inhalt der QuelleXU, HAILONG, QIUYU ZHANG, HEPENG ZHANG, BAOLIANG ZHANG und CHANGJIE YIN. „THE SIMULATION OF POLYSTYRENE/NANOPARTICLES COMPOSITE MICROSPHERES USING DISSIPATIVE PARTICLE DYNAMICS“. Journal of Theoretical and Computational Chemistry 12, Nr. 02 (März 2013): 1250111. http://dx.doi.org/10.1142/s0219633612501118.
Der volle Inhalt der QuelleKudryashov, Andrey, Svetlana Baryshnikova, Sergey Gusev, Dmitry Tatarskiy, Ivan Lukichev, Nadezhda Agareva, Andrey Poddel’sky und Nikita Bityurin. „UV-Induced Gold Nanoparticle Growth in Polystyrene Matrix with Soluble Precursor“. Photonics 9, Nr. 10 (19.10.2022): 776. http://dx.doi.org/10.3390/photonics9100776.
Der volle Inhalt der QuelleTsirikis, Peter, Kirsty Wilson, Ying Kong, Sue Xiang, Cordelia Selomulya und Magdalena Plebanski. „Differential antibody induction to surface textured silica nanoparticle adjuvants (VAC3P.1055)“. Journal of Immunology 194, Nr. 1_Supplement (01.05.2015): 71.2. http://dx.doi.org/10.4049/jimmunol.194.supp.71.2.
Der volle Inhalt der QuelleBartucci, Roberta, Alex Z. van der Meer, Ykelien L. Boersma, Peter Olinga und Anna Salvati. „Nanoparticle-induced inflammation and fibrosis in ex vivo murine precision-cut liver slices and effects of nanoparticle exposure conditions“. Archives of Toxicology 95, Nr. 4 (08.02.2021): 1267–85. http://dx.doi.org/10.1007/s00204-021-02992-7.
Der volle Inhalt der QuelleChu, Liang-Kai, S. Ranil Wickramasinghe, Xianghong Qian und Andrew L. Zydney. „Retention and Fouling during Nanoparticle Filtration: Implications for Membrane Purification of Biotherapeutics“. Membranes 12, Nr. 3 (07.03.2022): 299. http://dx.doi.org/10.3390/membranes12030299.
Der volle Inhalt der QuelleLi, Yunbo, Linlin Song und Yisha Qiao. „Spontaneous assembly and synchronous scan spectra of gold nanoparticle monolayer Janus film with thiol-terminated polystyrene“. RSC Adv. 4, Nr. 101 (2014): 57611–14. http://dx.doi.org/10.1039/c4ra10811f.
Der volle Inhalt der QuelleDissertationen zum Thema "Polystyrene nanoparticle"
Bellingeri, Arianna. „Ecotoxicity and sub-lethal effects of accidentally dispersed and purposely produced nanoparticles through a multi-trophic approach“. Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1201982.
Der volle Inhalt der QuelleFonner, Adam M. „An Investigation on Syndiotactic Polystyrene Aerogel Coating of Macroporous Fabric via Dip Coating Method“. University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron15550203400871.
Der volle Inhalt der QuelleZhou, Bo. „The preparation and characterization of thermo-sensitive colored hydrogel film and surfactant-free porous polystyrene three-dimensional network“. Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc3019/.
Der volle Inhalt der QuelleHeed, Elias. „Investigation of the effects of nanoparticle size on blood activation using a human wholeblood model“. Thesis, Uppsala universitet, Klinisk immunologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265904.
Der volle Inhalt der QuellePrime, Dominic Charles. „Switching mechanisms, electrical characterisation and fabrication of nanoparticle based non-volatile polymer memory devices“. Thesis, De Montfort University, 2010. http://hdl.handle.net/2086/3314.
Der volle Inhalt der QuelleCellier, Julien. „Etude et caractérisations de membranes nanocomposites hybrides pour pile à combustible du type PEMFC“. Thesis, Tours, 2017. http://www.theses.fr/2017TOUR4001/document.
Der volle Inhalt der QuelleThe proton conductive membrane is an essential part of the operation of PEMFC. This document presents the development of a non-perfluorinated membrane based on a hybrid nanocomposite technology likely to be produced at low cost. This membrane is composed of a poly(VDF-co-HFP) matrix in which are dispersed poly(styrene sulphonic acid) (PSSA) functionalized silica nanoparticles. This work focuses on the study of the implementation of the membrane to obtain a homogeneous and dense membrane with good physicochemical and electrochemical characteristics. Fuel cell performances after running at 60 °C are extremely satisfactory with a gain, compared to Nafion NRE211, of 40% for the power density at 0.7 V. However, the durability studies showed an elution phenomenon of the functionalized silica particles which results in a high voltage decline. Different membrane modification strategies have been proposed to improve the stability of the membrane. The most interesting involve modifying the morphology of the matrix (more rigid grades of PVDF or poly(VDF-co-HFP) crosslinking by radiation) to better confine the particles or grafting functionalized silica to the matrix. This last strategy leads to a threefold decrease of the swelling and 2.5 factor of the decay rate at 80 °C
Horgan, Adrian. „Polystyrene nanoparticles based on block and graft copolymers“. Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343355.
Der volle Inhalt der QuelleAl, Khafaji Ammar Sahib Abdulameer. „Understanding the uptake of polystyrene nanoparticles by the nasal mucosa“. Thesis, University of Iowa, 2016. https://ir.uiowa.edu/etd/2176.
Der volle Inhalt der QuelleShen, Jiong. „Application of nanoparticles in polymeric foams“. Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1150139899.
Der volle Inhalt der QuelleLi, Weiya. „Assemblage induit en milieu solvant de nanoparticules de silice à patchs : vers de nouvelles molécules colloïdales“. Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0127.
Der volle Inhalt der QuelleThis study deals with the assembly of patchy particles to get new materials. The state-of-the-art allowedus to select and implement an original strategy whose driving force is the solvent-induced assembly, i.e. based onthe stickiness of polystyrene (PS) macromolecules when they are subjected to a mixture of good and bad solvents.We investigated the assembly into clusters, chains or monolayers of one-patch, two-patch or three-patch silicananoparticles (NPs), respectively, the patches being PS macromolecules grafted at specific positions on theirsurface. One-patch silica NPs with controllable patch-to-particle size ratio were successfully synthesised throughphase separation and site-specific silica coating. Their assembly was performed in DMF/ethanol binary mixtures.The effect of the solvent quality, centrifugation force, particle concentration, incubation time and patch-to-size ratiowas investigated and discussed. The strategy was spread to obtain gold-coated clusters. The two-patch silica NPswere prepared through a seed-growth emulsion polymerisation of styrene and the patch-to-particle size ratio wasadjusted through the extent of the silica core regrowth. The chaining of the NPs was efficiently achieved in theTHF/NaCl aqueous solution mixtures by varying the NaCl concentration, solvent quality, incubation time, NPsconcentration and patch-to-particle size ratio. We showed that the kinetics of the chaining process is characteristicof a reaction-controlled step-growth polymerisation. Strategies to mimic homopolymers, random copolymers, blockcopolymers and branched polymers were implemented by using one-patch NPs, two-patch NPs with different sizes/surface chemical functions and/or three-patch NPs as building units. The three-patch silica NPs were obtainedthrough the same synthetic pathway than two-patch ones. For assembling them in honeycomb-like 2-D structures,we used the Langmuir technique.and we studied the influence of different experimental parameters. THF vapourannealing was implemented to reinforce mechanically the assembly but without significative effect on the packingdensity
Buchteile zum Thema "Polystyrene nanoparticle"
Kobayashi, Mikihiko, Mitsuru Egashira und Takeshi Konno. „Fabrication of Polystyrene Fibers Containing Nanoparticles of TiO2 and ZnO by Electrospinning“. In Materials Science Forum, 663–66. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.663.
Der volle Inhalt der QuelleDi Palma, Pasquale, Lucia Sansone, Chiara Taddei, Stefania Campopiano, Michele Giordano und Agostino Iadicicco. „Relative Humidity Sensor Based on Tip of Multimode Optical Fiber Integrated with Photonic Crystal of Hydrogel Coated Polystyrene Nanoparticles“. In Lecture Notes in Electrical Engineering, 403–8. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37558-4_60.
Der volle Inhalt der QuelleAuguste, Manon, Teresa Balbi, Caterina Ciacci und Laura Canesi. „What Can Model Polystyrene Nanoparticles Can Teach Us on the Impact of Nanoplastics in Bivalves? Studies in Mytilus from the Molecular to the Organism Level“. In Springer Water, 20–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45909-3_5.
Der volle Inhalt der QuelleT. Varkey, Jaya. „Synthesis and Catalytic Activity Studies of Silver Nanoparticles Stabilized in Polymeric Hydro Gel“. In Silver Micro-Nanoparticles - Properties, Synthesis, Characterization, and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97824.
Der volle Inhalt der QuelleBoonmahitthisud, Anyaporn. „Natural Rubber and Rubber Blend Nanocomposites“. In Applied Environmental Materials Science for Sustainability, 77–105. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1971-3.ch004.
Der volle Inhalt der QuelleAuclair, Joëlle, Brian Quinn und François Gagné. „Bioavailability and Effects of Polystyrene Nanoparticles in Hydra circumcincta“. In Emerging Technologies, Environment and Research for Sustainable Aquaculture. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.90177.
Der volle Inhalt der QuelleMadhu, B. J., Mohammed Irfan, A. Manjunath, N. P. Divya, S. S. Mahesh und B. Shruthi. „Influence of Zinc Oxide Nanoparticles on the Optical, Dielectric and Electromagnetic Interference Shielding Performance of Polystyrene Films“. In Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, 1080–92. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8591-7.ch044.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Polystyrene nanoparticle"
Fukushima, A., und K. Fujita. „Organic resistive memories composed of Au nanoparticle/polystyrene with embedded nanoparticle on the electrode“. In 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.ps-10-7.
Der volle Inhalt der QuelleYacobi, NR, N. Malmstadt, F. Fazlollahi, R. Marchelletta, SF Hamm-Alvarez, Z. Borok, KJ Kim und ED Crandall. „Mechanisms of Polystyrene Nanoparticle Translocation across Alveolar Epithelial Cell Monolayers.“ In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5037.
Der volle Inhalt der QuelleShalaev, Pavel V., und Polina A. Monakhova. „Experimental Study of Polystyrene and Gold Nanoparticles using Dynamic Light Scattering and Nanoparticle Tracking Analysis“. In 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2020. http://dx.doi.org/10.1109/eiconrus49466.2020.9039346.
Der volle Inhalt der QuelleJurney, Patrick, Rachit Agarwal, Vikramjit Singh, Krishnendu Roy, S. V. Sreenivasan und Li Shi. „The Effect of Nanoparticle Size on Margination and Adhesion Propensity in Artificial Micro-Capillaries“. In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75258.
Der volle Inhalt der QuelleWang, Y., C. Rendón-Barraza, K. F. MacDonald, E. Plum, J. Y. Ou und N. I. Zheludev. „3D Position Nanometrology of a Coronavirus-like Nanoparticle with Topologically Structured Light“. In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.ss1a.4.
Der volle Inhalt der QuelleBurkhart, Collin T., Kara L. Maki und Michael J. Schertzer. „Impact of Particle Selection on Nanoparticle Self-Assembly in Evaporating Colloidal Droplets“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66851.
Der volle Inhalt der QuelleVarghese, Ivin, M. D. Murthy Peri, Dong Zhou, A. T. John Kadaksham, Thomas J. Dunbar und Cetin Cetinkaya. „Nanoparticle Removal Using Laser Induced Plasma Shockwaves“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13941.
Der volle Inhalt der QuelleFazlollahi, Farnoosh, Y. H. Kim, L. DeMaio, S. F. Hamm-Alvarez, Z. Borok, K. J. Kim und E. D. Crandall. „Polystyrene Nanoparticle (PNP) Trafficking Across Primary Cultured Mouse Alveolar Epithelial Cell Monolayers (MAECM)“. In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a2276.
Der volle Inhalt der QuelleJiang, Liwen, Xuqing Sun, Hongyao Liu, Wei Xiong, Yaqin Chen und Xinchao Lu. „Label-free imaging to single nanoparticle by using TIR-based Interface Scattering“. In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.8a_a409_2.
Der volle Inhalt der QuelleAbdelrahman, Mustafa, Slade C. Jewell, Abdalla Elbella und Shannon J. Timpe. „Graphene Oxide / Nanodiamond Nanocomposites Characterized via Particle Dispersion and Micro- and Nanoscale Mechanical Properties“. In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-72137.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Polystyrene nanoparticle"
Koprinarova, Miglena, David Garry, Delyan R. Hristov und Ivanka Dimova. Induction of Epigenetic Response to Aminomodified Polystyrene Nanoparticles in Human Cells. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Oktober 2018. http://dx.doi.org/10.7546/crabs.2018.10.07.
Der volle Inhalt der Quelle