Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „POSITION CONTROL OF ROBOT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "POSITION CONTROL OF ROBOT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "POSITION CONTROL OF ROBOT"
Zhang, Liang, Yaguang Zhu, Feifei Zhang und Shuangjie Zhou. „Position-Posture Control of Multilegged Walking Robot Based on Kinematic Correction“. Journal of Robotics 2020 (25.09.2020): 1–9. http://dx.doi.org/10.1155/2020/8896396.
Der volle Inhalt der QuellePană, Cristina, Cristian Vladu, Daniela Pătraşcu-Pană, Florina Besnea (Petcu), Çtefan Cismaru, Andrei Trăşculescu, Ionuţ Reşceanu und Nicu Bîzdoacă. „Position control for hybrid infinite-continuous hyper-redundant robot“. MATEC Web of Conferences 343 (2021): 08009. http://dx.doi.org/10.1051/matecconf/202134308009.
Der volle Inhalt der QuellePark, Hwi-Geun, und Hyun-Sik Kim. „Mechanism Development and Position Control of Smart Buoy Robot“. Journal of Ocean Engineering and Technology 35, Nr. 4 (31.08.2021): 305–12. http://dx.doi.org/10.26748/ksoe.2021.043.
Der volle Inhalt der QuelleSu, Liying, Lei Shi und Yueqing Yu. „Collaborative Assembly Operation between Two Modular Robots Based on the Optical Position Feedback“. Journal of Robotics 2009 (2009): 1–8. http://dx.doi.org/10.1155/2009/214154.
Der volle Inhalt der QuelleHandayani, A. S., N. L. Husni, A. B. Insani, E. Prihatini, C. R. Sitompul, S. Nurmaini und I. Yani. „Robot Position Control using Android“. Journal of Physics: Conference Series 1198, Nr. 5 (April 2019): 052002. http://dx.doi.org/10.1088/1742-6596/1198/5/052002.
Der volle Inhalt der QuelleNugraha, Sapta. „Sistem Kendali Navigasi Robot Manual“. JTEV (Jurnal Teknik Elektro dan Vokasional) 5, Nr. 1.1 (25.09.2019): 91. http://dx.doi.org/10.24036/jtev.v5i1.1.106153.
Der volle Inhalt der QuelleKazerooni, H. „Compliance Control and Stability Analysis of Cooperating Robot manipulators“. Robotica 7, Nr. 3 (Juli 1989): 191–98. http://dx.doi.org/10.1017/s0263574700006044.
Der volle Inhalt der QuelleLi, Zhaolu, Ning Xu, Xiaoli Zhang, Xiafu Peng und Yumin Song. „Motion Control Method of Bionic Robot Dog Based on Vision and Navigation Information“. Applied Sciences 13, Nr. 6 (13.03.2023): 3664. http://dx.doi.org/10.3390/app13063664.
Der volle Inhalt der QuelleMassoud, A. T., und H. A. ElMaraghy. „AN IMPEDANCE CONTROL APPROACH FOR FLEXIBLE JOINTS ROBOT MANIPULATORS“. Transactions of the Canadian Society for Mechanical Engineering 19, Nr. 3 (September 1995): 212–26. http://dx.doi.org/10.1139/tcsme-1995-0010.
Der volle Inhalt der QuelleSong, Zhifeng. „Sliding control method of marine ecological protection robot“. Thermal Science 25, Nr. 6 Part A (2021): 4043–50. http://dx.doi.org/10.2298/tsci2106043s.
Der volle Inhalt der QuelleDissertationen zum Thema "POSITION CONTROL OF ROBOT"
Winter, Pieter Arnoldus. „Position control of a mobile robot /“. Link to the online version, 2005. http://hdl.handle.net/10019/1317.
Der volle Inhalt der QuelleWinter, Pieter. „Position control of a mobile robot“. Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/1776.
Der volle Inhalt der QuellePosition calculation of mobile objects has challenged engineers and designers for years and is still continuing to do so. There are many solutions available today. Probably the best known and most widely used outdoor system today is the Global Positioning System (GPS). There are very little systems available for indoor use. An absolute positioning system was developed for this thesis. It uses a combination of ultrasonic and Radio Frequency (RF) communications to calculate a position fix in doors. Radar techniques were used to ensure robustness and reliability even in noisy environments. A small mobile robot was designed and built to test and illustrate the use of the system.
Steven, Andrew. „Hybrid force and position control in robotic surface processing“. Thesis, University of Newcastle Upon Tyne, 1989. http://hdl.handle.net/10443/657.
Der volle Inhalt der QuelleSahirad, Mohammad. „Position and force control of direct drive robot arms“. Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47240.
Der volle Inhalt der QuelleIrigoyen, Eizmendi Javier. „Commande en position et force d'un robot manipulateur d'assemblage“. Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37598444q.
Der volle Inhalt der QuelleYung, Ho-lam. „Position and pose estimation for visual control of robot manipulators in planar tasks“. Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43224283.
Der volle Inhalt der QuelleZhang, Zhongkai. „Vision-based calibration, position control and force sensing for soft robots“. Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I001/document.
Der volle Inhalt der QuelleThe modeling of soft robots which have, theoretically, infinite degrees of freedom, are extremely difficult especially when the robots have complex configurations. This difficulty of modeling leads to new challenges for the calibration and the control design of the robots, but also new opportunities with possible new force sensing strategies. This dissertation aims to provide new and general solutions using modeling and vision. The thesis at first presents a discrete-time kinematic model for soft robots based on the real-time Finite Element (FE) method. Then, a vision-based simultaneous calibration of sensor-robot system and actuators is investigated. Two closed-loop position controllers are designed. Besides, to deal with the problem of image feature loss, a switched control strategy is proposed by combining both the open-loop controller and the closed-loop controller. Using soft robot itself as a force sensor is available due to the deformable feature of soft structures. Two methods (marker-based and marker-free) of external force sensing for soft robots are proposed based on the fusion of vision-based measurements and FE model. Using both methods, not only the intensities but also the locations of the external forces can be estimated.As a specific application, a cable-driven continuum catheter robot through contacts is modeled based on FE method. Then, the robot is controlled by a decoupled control strategy which allows to control insertion and bending independently. Both the control inputs and the contact forces along the entire catheter can be computed by solving a quadratic programming (QP) problem with a linear complementarity constraint (QPCC)
Yung, Ho-lam, und 容浩霖. „Position and pose estimation for visual control of robot manipulators in planar tasks“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43224283.
Der volle Inhalt der QuelleKhademolama, Ehsan. „Vision in the Loop for Force and Position Control of the Robot Manipulators“. Doctoral thesis, Università degli studi di Bergamo, 2018. http://hdl.handle.net/10446/104935.
Der volle Inhalt der QuelleBest, Charles Mansel. „Position and Stiffness Control of Inflatable Robotic Links Using Rotary Pneumatic Actuation“. BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5971.
Der volle Inhalt der QuelleBücher zum Thema "POSITION CONTROL OF ROBOT"
Center, Langley Research, Hrsg. Robot position sensor fault tolerance. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Den vollen Inhalt der Quelle finden1936-, Aggarwal J. K., und United States. National Aeronautics and Space Administration., Hrsg. Positional estimation techniques for an autonomous mobile robot: Final report. Austin, Tex: Computer and Vision Research Center, University of Texas at Austin, 1990.
Den vollen Inhalt der Quelle findenZhen-Lei, Zhou, und United States. National Aeronautics and Space Administration., Hrsg. Learning-based position control of a closed-kinematic chain robot end-effector. Washington, DC: Catholic University of America, Dept. of Electrical Engineering, 1990.
Den vollen Inhalt der Quelle findenJer-Nan, Juang, und Langley Research Center, Hrsg. Experimental robot position sensor fault tolerance using accelerometers and joint torque sensors. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenLamon, Pierre. 3D-position tracking and control for all-terrain robots. Berlin: Springer, 2008.
Den vollen Inhalt der Quelle finden3D-position tracking and control for all-terrain robots. Berlin: Springer, 2008.
Den vollen Inhalt der Quelle findenMutambara, Arthur G. O. A framework for a supervisory expert system for robotic manipulators with joint-position limits and joint-rate limits. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Den vollen Inhalt der Quelle findenLamon, Pierre. 3D-Position Tracking and Control for All-Terrain Robots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78287-2.
Der volle Inhalt der QuelleStirniman, Robert. U.S. market for position sensors, 1986-1991 (and interface electronics). [United States]: Motor Tech Trends, 1986.
Den vollen Inhalt der Quelle findenE, Cook George, und United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., Hrsg. A generalized method for automatic downhand and wirefeed control of a welding robot and positioner. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "POSITION CONTROL OF ROBOT"
Siciliano, Bruno, und Luigi Villani. „Advanced Force and Position Control“. In Robot Force Control, 89–112. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4431-9_5.
Der volle Inhalt der QuelleTamas, Levente, Gheorghe Lazea, Andras Majdik, Mircea Popa und Istvan Szoke. „Position Estimation Techniques for Mobile Robots“. In Robot Motion and Control 2009, 319–28. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-985-5_29.
Der volle Inhalt der QuelleSiciliano, Bruno. „Parallel Force/Position Control of Robot Manipulators“. In Robotics Research, 78–89. London: Springer London, 1996. http://dx.doi.org/10.1007/978-1-4471-1021-7_9.
Der volle Inhalt der QuelleRönnau, Arne, Thilo Kerscher und Rüdiger Dillmann. „Dynamic Position/Force Controller of a Four Degree-of-Freedom Robotic Leg“. In Robot Motion and Control 2011, 117–26. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2343-9_9.
Der volle Inhalt der QuelleMaiti, Roshni, Kaushik Das Sharma und Gautam Sarkar. „Angular Position Control of Two Link Robot Manipulator“. In Studies in Systems, Decision and Control, 181–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97102-1_6.
Der volle Inhalt der QuelleTetik, Halil, Rohit Kalla, Gokhan Kiper und Sandipan Bandyopadhyay. „Position Kinematics of a 3-RRS Parallel Manipulator“. In ROMANSY 21 - Robot Design, Dynamics and Control, 65–72. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33714-2_8.
Der volle Inhalt der QuelleMurray, A. P., und F. Pierrot. „N-Position Synthesis of Parallel Planar RPR Platforms“. In Advances in Robot Kinematics: Analysis and Control, 69–78. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9064-8_7.
Der volle Inhalt der QuelleNonami, Kenzo, Ranjit Kumar Barai, Addie Irawan und Mohd Razali Daud. „Position-Based Robust Locomotion Control of Hexapod Robot“. In Intelligent Systems, Control and Automation: Science and Engineering, 105–39. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54349-7_5.
Der volle Inhalt der QuelleDeng, Wenbin, Hyuk-Jin Lee und Jeh-Won Lee. „Dynamic Hybrid Position/Force Control for Parallel Robot Manipulators“. In ROMANSY 18 Robot Design, Dynamics and Control, 57–64. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0277-0_6.
Der volle Inhalt der QuelleYamamoto, Ko, Ryo Yanase und Yoshihiko Nakamura. „Maximal Output Admissible Set of Foot Position Control in Humanoid Walking“. In ROMANSY 23 - Robot Design, Dynamics and Control, 43–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58380-4_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "POSITION CONTROL OF ROBOT"
Ryu, Ji-Chul, Kaustubh Pathak und Sunil K. Agarwal. „Control of a Passive Mobility Assistive Robot“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14701.
Der volle Inhalt der QuelleKhatib, Oussama, Peter Thaulad, Taizo Yoshikawa und Jaeheung Park. „Torque-position transformer for task control of position controlled robots“. In 2008 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2008. http://dx.doi.org/10.1109/robot.2008.4543450.
Der volle Inhalt der QuelleTsuno, Takaya, Tatsuhiro Morimoto, Hirokazu Matsui, Ken’ichi Yano, Toyohisa Mizuochi, Toshihiko Arima und Shigeru Fukui. „Position Correcting Control System for the Vacuum Cleaning Robot Considering Hose Repulsion“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11176.
Der volle Inhalt der QuelleDobrovodsky, K. „Quaternion position representation in robot kinematic structures“. In International Conference on Control '94. IEE, 1994. http://dx.doi.org/10.1049/cp:19940193.
Der volle Inhalt der QuelleNurlaili, Ridha, Indra Adji Sulistijono und Anhar Risnumawan. „Mobile Robot Position Control Using Computer Vision“. In 2019 International Electronics Symposium (IES). IEEE, 2019. http://dx.doi.org/10.1109/elecsym.2019.8901619.
Der volle Inhalt der QuelleBayoume, Mustafa Osman, M. Abd El-Geliel und Sohair F. Rezeka. „Supervisory position control for wheeled mobile robot“. In 2016 20th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2016. http://dx.doi.org/10.1109/icstcc.2016.7790670.
Der volle Inhalt der QuellePadhy, P. K., Takeshi Sasaki, Sousuke Nakamura und Hideki Hashimoto. „Modeling and position control of mobile robot“. In 2010 11th IEEE International Workshop on Advanced Motion Control (AMC). IEEE, 2010. http://dx.doi.org/10.1109/amc.2010.5464018.
Der volle Inhalt der QuelleFilaretov, Vladimir F., und Alexandr V. Zuev. „Adaptive force/position control of robot manipulators“. In 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2008. http://dx.doi.org/10.1109/aim.2008.4601641.
Der volle Inhalt der QuelleShi, Wang, und Wang Yao-nan. „Robot position control based on Hamiltonian system“. In 2013 Chinese Automation Congress (CAC). IEEE, 2013. http://dx.doi.org/10.1109/cac.2013.6775830.
Der volle Inhalt der QuelleIldar Farkhatdinov und Jee-Hwan Ryu. „Hybrid position-position and position-speed command strategy for the bilateral teleoperation of a mobile robot“. In 2007 International Conference on Control, Automation and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iccas.2007.4406773.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "POSITION CONTROL OF ROBOT"
Nasr, Chaiban. Neural Networks For Robot Control. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada387882.
Der volle Inhalt der QuelleWilliamson, Matthew M. Exploiting Natural Dynamics in Robot Control. Fort Belvoir, VA: Defense Technical Information Center, Januar 1998. http://dx.doi.org/10.21236/ada457056.
Der volle Inhalt der QuelleGage, Douglas W. Command Control for Many-Robot Systems. Fort Belvoir, VA: Defense Technical Information Center, Juni 1992. http://dx.doi.org/10.21236/ada422540.
Der volle Inhalt der QuelleGeorge Danko. Integrated Robot-Human Control in Mining Operations. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/988569.
Der volle Inhalt der QuelleGeorge Danko. INTEGRATED ROBOT-HUMAN CONTROL IN MINING OPERATIONS. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/882518.
Der volle Inhalt der QuelleGeorge Danko. INTEGRATED ROBOT-HUMAN CONTROL IN MINING OPERATIONS. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/882519.
Der volle Inhalt der QuelleFalco, Joe, Jeremy Marvel, Rick Norcross und Karl Van Wyk. Benchmarking Robot Force Control Capabilities: Experimental Results. National Institute of Standards and Technology, Januar 2016. http://dx.doi.org/10.6028/nist.ir.8097.
Der volle Inhalt der QuelleBlackburn, Michael R., und Hoa G. Nguyen. Autonomous Visual Control of a Mobile Robot. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada422533.
Der volle Inhalt der QuelleStarr, G. Sensor-driven robot control and mobility: Final report. Office of Scientific and Technical Information (OSTI), Mai 1989. http://dx.doi.org/10.2172/5912296.
Der volle Inhalt der QuelleArkin, Ronald C., Frank Dellaert und Joan Devassy. Envisioning: Mental Rotation-based Semi-reactive Robot Control. Fort Belvoir, VA: Defense Technical Information Center, Januar 2012. http://dx.doi.org/10.21236/ada563085.
Der volle Inhalt der Quelle