Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „POWER PLANT SYSTEM“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "POWER PLANT SYSTEM" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "POWER PLANT SYSTEM"
KATAGIRI, Yukinori, Takuya YOSHIDA und Tatsurou YASHIKI. „E208 AUTOMATIC CODE GENERATION SYSTEM FOR POWER PLANT DYNAMIC SIMULATORS(Power System-2)“. Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2 (2009): _2–401_—_2–406_. http://dx.doi.org/10.1299/jsmeicope.2009.2._2-401_.
Der volle Inhalt der QuelleTANIGUCHI, Akihiro, Atsuhide SUZUKI und Masataka FUKUDA. „Geothermal Power Plant System“. Journal of the Society of Mechanical Engineers 112, Nr. 1085 (2009): 274–77. http://dx.doi.org/10.1299/jsmemag.112.1085_274.
Der volle Inhalt der QuelleVyas, Sanjay R., und Dr Ved Vyas Dwivedi. „Genetic Algorithm for Plant Generation Schedule in Electrical Power System“. Paripex - Indian Journal Of Research 2, Nr. 1 (15.01.2012): 52–53. http://dx.doi.org/10.15373/22501991/jan2013/19.
Der volle Inhalt der QuelleNeuman, P., K. Máslo, B. Šulc und A. Jarolímek. „Power System and Power Plant Dynamic Simulation“. IFAC Proceedings Volumes 32, Nr. 2 (Juli 1999): 7294–99. http://dx.doi.org/10.1016/s1474-6670(17)57244-4.
Der volle Inhalt der QuelleOSHIMA, Kanji, und Yohji UCHIYAMA. „E213 PLANT PERFORMANCE AND ECONOMIC STUDY ON OXY FUEL GAS TURBINE POWER PLANT UTILIZING NUCLEAR STEAM GENERATOR(Power System-3)“. Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2 (2009): _2–425_—_2–430_. http://dx.doi.org/10.1299/jsmeicope.2009.2._2-425_.
Der volle Inhalt der QuelleZAITSEV, SERGEY, und VALENTIN ТIKHENKO. „DIAGNOSIS OF POWER OIL IN PUMPING UNITS COOLING SYSTEMS OF POWER PLANT EQUIPMENT“. Herald of Khmelnytskyi National University. Technical sciences 319, Nr. 2 (27.04.2023): 113–19. http://dx.doi.org/10.31891/2307-5732-2023-319-1-113-119.
Der volle Inhalt der QuelleKatono, Kenichi, und Yoshihiko Ishii. „ICONE23-1601 ANALYSIS STABILIZATION TECHNIQUE OF NUCLEAR POWER PLANT SIMULATION SYSTEM“. Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_287.
Der volle Inhalt der QuelleRAN, Peng, Songling WANG und Shufang ZHANG. „E212 A MATRIX METHOD OF ANALYZING THE AUXILIARY THERMODYNAMIC SYSTEM OF PWR NUCLEAR POWER PLANT SECONDARY LOOPS(Power System-3)“. Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2 (2009): _2–421_—_2–424_. http://dx.doi.org/10.1299/jsmeicope.2009.2._2-421_.
Der volle Inhalt der QuelleChen, Xiaofeng, Guanlu Yang, Yajing Lv und Zehong Huang. „Power Management System Based on Virtual Power Plant“. IOP Conference Series: Earth and Environmental Science 356 (28.10.2019): 012006. http://dx.doi.org/10.1088/1755-1315/356/1/012006.
Der volle Inhalt der QuelleYOSHINAGA, Toshiaki, Takeshige SEKI und Kimihiro IOKI. „CAE system in nuclear power plant.“ Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 29, Nr. 3 (1987): 175–83. http://dx.doi.org/10.3327/jaesj.29.175.
Der volle Inhalt der QuelleDissertationen zum Thema "POWER PLANT SYSTEM"
Perez, de Larraya Espinosa Mikel. „Photovoltaic Power Plant Aging“. Thesis, Högskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-33252.
Der volle Inhalt der QuelleBengtsson, Sara. „Modelling of a Power System in a Combined Cycle Power Plant“. Thesis, Uppsala universitet, Elektricitetslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-149318.
Der volle Inhalt der QuelleCregan, J. „Thermoeconomic monitoring of power plant condenser sub system“. Thesis, Queen's University Belfast, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411755.
Der volle Inhalt der QuelleBomstad, Fredrik, und Kjetil Nordland. „Energy System for LNG Plant Based on Imported Power“. Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9021.
Der volle Inhalt der QuelleIt has been proposed to supply heat and power to Snøhvit Train II (STII) from onsite heat generation based on natural gas and power import from the power grid. Without carbon capture and storage, greenhouse gas (GHG) emissions from the combustion of natural gas in furnaces make a considerable contribution to the global warming potential (GWP) of this energy system. Depending on the interpretation of marginal power consumption, the power import also contributes to and increases this systems GWP. A recent SINTEF report claimed that European CO2 emissions are reduced with additional renewable power production in Norway, and it has been suggested to invest in wind power in order to completely offset the GWP of the STII energy system. This paper provides investment analyses for the proposed energy system. A scenario approach was used, with six different scenarios covering two dimensions. The first dimension is the origin of the grid power, with three different interpretations of marginal power representing Cases A, B and C. The other dimension is the STII train size, with two different sizes being analyzed, namely 50 % and 70 % of the Snøhvit Train I design capacity. The proposed energy system was also analyzed with respect to security of supply. Improved reliability and transmission capacity, together with a stable, positive power balance, make a good foundation for security of power supply. The power demand of the two train sizes was estimated to 101 MW and 141 MW, with corresponding heat demand of 94 MW and 131 MW. These estimates were based on a combination of HYSYS simulations and data provided by StatoilHydro (SH), and provided input for both the GWP analysis and the investment analysis. The GWP impact of each scenario determined the share of power import from the grid that would have to be replaced by energy harnessed from wind. The applied capacity factor was 39.6 %, and the rated wind power requirement for the six different scenarios ranged from 101 MW for the A.50 scenario to 257 MW for the C.70 scenario. The break even (BE) energy prices were calculated for each of the six scenarios analyzed. If the power consumption is based solely on power import, with zero StatoilHydro (SH) share of grid reinforcements and no SH development of wind power, the BE power price would be 466 NOK/MWh. The inclusion of wind power development as part of the investment will increase the BE power price by up to 33 NOK/MWh. The additional SH share of grid reinforcement will add 86 NOK/MWh for the 50 % STII or 62 NOK/MWh for the 70 % STII. It was shown that the investment in wind power to offset the GWP of the energy system might also be a reasonable way of hedging against increases in the market price of electricity. It was found that the share of STII power demand that is provided by wind power is one of the parameters that have the least influence on the projects net present value (NPV). A high share of wind power is an inexpensive investment in improving reputation and predictability of energy price.
Chan, Lai Cheong. „Investigation on energy efficiency of electrical power system in Macau Coloane power plant“. Thesis, University of Macau, 2012. http://umaclib3.umac.mo/record=b2586280.
Der volle Inhalt der QuelleBoesak, Dawid John Johannes. „Voltage stability analysis of a power system network comprising a nuclear power plant“. Master's thesis, Faculty of Engineering and the Built Environment, 2018. http://hdl.handle.net/11427/30056.
Der volle Inhalt der QuelleOpara, Chigozie Ethelvivian. „Energy Efficiency of the HVAC System of a Power Plant“. OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1741.
Der volle Inhalt der QuelleKhabrana, Ahmed, und Jaber Ageeli. „Producing Electricity in Power Plant“. Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1979.
Der volle Inhalt der QuelleConclusion: Converting in steam power plant is one of many ways to produce electrical energy in the world. It can be done in any country because it can be done with different chemical sources. In Saudi Arabia we use oil, because it easier and cheaper than any other chemical source for us. As any country would use what is better for them. The thesis has described circulation system in Shoaiba power plant by converting chemical energy to thermal energy in the boiler, then the turbine converts thermal energy to mechanical energy. Then the mechanical energy is converted to electrical energy in the generator. The advantages of the steam stations are as follows: production of high amounts of electrical energy from small amounts of fuel, low cost of the initial costs, obstetrics and maintenance costs are not high, the station does not need much space to build and they are usually high capacity. The disadvantages of steam stations are the following: environmental pollution, low efficiency, requires very big amounts of cooling water, and these stations must be built away from population areas.
0706397524
Andrade, Dagmar Luz de. „An object-oriented knowledge-based system for hydroelectric power plant turbine selection“. Ohio : Ohio University, 1992. http://www.ohiolink.edu/etd/view.cgi?ohiou1171487350.
Der volle Inhalt der QuelleRuiz, Álvaro. „System aspects of large scale implementation of a photovoltaic power plant“. Thesis, KTH, Elektriska energisystem, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-53719.
Der volle Inhalt der QuelleBücher zum Thema "POWER PLANT SYSTEM"
Paul, Priddy A., Hrsg. Power plant system design. New York: Wiley, 1985.
Den vollen Inhalt der Quelle findenNinagawa, Chuzo. Virtual Power Plant System Integration Technology. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6148-8.
Der volle Inhalt der QuelleCheetham, R. G. Power system plant modelling from PRBS experiments. Sheffield: University,Dept. of Control Engineering, 1986.
Den vollen Inhalt der Quelle findenL, Edson Jerald, U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Safety. und EG & G Idaho., Hrsg. Nuclear plant aging research: The 1E power system. Washington, D.C: Division of Engineering Safety, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1990.
Den vollen Inhalt der Quelle findenGilberto Francisco Martha de Souza. Thermal Power Plant Performance Analysis. London: Springer London, 2012.
Den vollen Inhalt der Quelle findenEla, Erik. Wind plant ramping behavior. Golden, CO: National Renewable Energy Laboratory, 2009.
Den vollen Inhalt der Quelle findenSue, Yih, und He neng yan jiu suo., Hrsg. Nuclear power plant evacuation planning: An expert system approach. Lung-Tan, Taiwan, Republic of China: Institute of Nuclear Energy Research, 1987.
Den vollen Inhalt der Quelle findenJ, Mandula, und International Atomic Energy Agency, Hrsg. Nuclear power plant design characteristics: Structure of nuclear power plant design characteristics in the IAEA Power Reactor Information System (PRIS). Vienna: International Atomic Energy Agency, 2007.
Den vollen Inhalt der Quelle findenBoiler plant and distribution system optimization manual. 2. Aufl. Lilburn, GA: Fairmont Press, 1998.
Den vollen Inhalt der Quelle findenInstitution of Engineering and Technology. Thermal Power Plant Simulation and Control. Stevenage: IET, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "POWER PLANT SYSTEM"
Ninagawa, Chuzo. „Virtual Power Plant System“. In Virtual Power Plant System Integration Technology, 33–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6148-8_3.
Der volle Inhalt der QuelleSoroudi, Alireza. „Power Plant Dispatching“. In Power System Optimization Modeling in GAMS, 65–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62350-4_3.
Der volle Inhalt der QuelleNinagawa, Chuzo. „Virtual Power Plant Performance“. In Virtual Power Plant System Integration Technology, 139–206. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6148-8_7.
Der volle Inhalt der QuelleBhandari, Bhanu Pratap, Yati Sharma und Altaf Hasan Tarique. „Floating Solar Power Plant System“. In Lecture Notes in Mechanical Engineering, 461–66. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9613-8_42.
Der volle Inhalt der QuelleZohuri, Bahman, und Patrick McDaniel. „Electrical System“. In Thermodynamics In Nuclear Power Plant Systems, 455–78. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13419-2_17.
Der volle Inhalt der QuelleZohuri, Bahman, und Patrick McDaniel. „Electrical System“. In Thermodynamics in Nuclear Power Plant Systems, 451–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93919-3_17.
Der volle Inhalt der QuelleNinagawa, Chuzo. „Components of Virtual Power Plant“. In Virtual Power Plant System Integration Technology, 55–84. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6148-8_4.
Der volle Inhalt der QuelleNieman, William, und Ralph Singer. „Detection of Incipient Signal or Process Faults in a Co-Generation Plant Using the Plant ECM System“. In Power Systems, 121–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04945-7_9.
Der volle Inhalt der QuelleChen, Falin. „Dynamic Design of the Relay Platform and Anchor System“. In The Kuroshio Power Plant, 87–120. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00822-6_4.
Der volle Inhalt der QuelleNinagawa, Chuzo. „Battery Control in Virtual Power Plant“. In Virtual Power Plant System Integration Technology, 85–102. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6148-8_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "POWER PLANT SYSTEM"
Chandran, Ram. „Maximizing Plant Power Output Using Dry Cooling System“. In ASME 2004 Power Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/power2004-52109.
Der volle Inhalt der QuelleClement, Zachary, Fletcher Fields, Diana Bauer, Vincent Tidwell, Calvin Ray Shaneyfelt und Geoff Klise. „Effects of Cooling System Operations on Withdrawal for Thermoelectric Power“. In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3763.
Der volle Inhalt der QuelleNakao, Yoshinobu, Toru Takahashi und Yutaka Watanabe. „Development of Plant Performance Analysis System for Geothermal Power Plant“. In ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55373.
Der volle Inhalt der QuelleZhu, Xin, Chang’an Wang, Chunli Tang und Defu Che. „Energy Analysis of a Lignite-Fueled Power Plant With a Two-Stage Predrying System“. In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3180.
Der volle Inhalt der QuelleTakiguchi, S., K. Sakai, N. Watanabe und M. Yamasaki. „Plant Automation And Crt Display System For Nuclear Power Plants“. In Robotics and IECON '87 Conferences, herausgegeben von Victor K. Huang. SPIE, 1987. http://dx.doi.org/10.1117/12.943279.
Der volle Inhalt der QuelleDivani, Drashti, Pallavi Patil und Sunil K. Punjabi. „Automated plant Watering system“. In 2016 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC). IEEE, 2016. http://dx.doi.org/10.1109/iccpeic.2016.7557245.
Der volle Inhalt der QuellePryor, B. „ScottishPower's experiences of power system ferroresonance“. In IEE Colloquium: `Warning! Ferroresonance Can Damage Your Plant'. IEE, 1997. http://dx.doi.org/10.1049/ic:19971175.
Der volle Inhalt der QuelleAkagi, S., L. Fujita und H. Kubonishi. „Building an Expert System for Power Plant Design“. In ASME 1988 Design Technology Conferences. American Society of Mechanical Engineers, 1988. http://dx.doi.org/10.1115/detc1988-0038.
Der volle Inhalt der QuelleYun, Yu, Zheng Shen und Liu Jing. „Classification Analysis of Communication System of Nuclear Power Plant“. In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16235.
Der volle Inhalt der QuelleMohammadi, Kasra, und Jon G. McGowan. „Simulation and Characterization of a Hybrid Concentrated Solar Tower System for Co-Generation of Power and Fresh Water“. In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3758.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "POWER PLANT SYSTEM"
Scroppo, J. A. Simulated Coal Gas MCFC Power Plant System Verification. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/3805.
Der volle Inhalt der QuelleMathur, A., und C. Koch. Solar central receiver power plant control system concept. Office of Scientific and Technical Information (OSTI), Juli 1988. http://dx.doi.org/10.2172/6914107.
Der volle Inhalt der QuelleJ.A. Scroppo. SIMULATED COAL GAS MCFC POWER PLANT SYSTEM VERIFICATION. Office of Scientific and Technical Information (OSTI), Juli 1998. http://dx.doi.org/10.2172/769309.
Der volle Inhalt der QuelleMeyer, L., und J. Edson. Nuclear plant aging research: The 1E power system. Office of Scientific and Technical Information (OSTI), Mai 1990. http://dx.doi.org/10.2172/6954726.
Der volle Inhalt der QuelleAuthor, Not Given. System Definition and Analysis: Power Plant Design and Layout. Office of Scientific and Technical Information (OSTI), Mai 1996. http://dx.doi.org/10.2172/16110.
Der volle Inhalt der QuelleBryant, Kendall J. Power Plant Fuel Consumption: A Linear and Rule Based System. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada202367.
Der volle Inhalt der QuelleBrown, D. R., J. L. LaMarche und G. E. Spanner. Chemical energy storage system for SEGS solar thermal power plant. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/6273418.
Der volle Inhalt der QuellePereira da Cunha, Mauricio. Wireless microwave acoustic sensor system for condition monitoring in power plant environments. Office of Scientific and Technical Information (OSTI), März 2017. http://dx.doi.org/10.2172/1406890.
Der volle Inhalt der QuelleGolay, Michael W. Improving human reliability through better nuclear power plant system design. Final report. Office of Scientific and Technical Information (OSTI), Februar 1998. http://dx.doi.org/10.2172/766047.
Der volle Inhalt der QuelleGolay, M. W. Improving human reliability through better nuclear power plant system design. Progress report. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/10117238.
Der volle Inhalt der Quelle