Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „PRISMATIC ELEMENT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "PRISMATIC ELEMENT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "PRISMATIC ELEMENT"
Klochkov, Yu V., A. P. Nikolaev, O. V. Vakhnina und M. Yu Klochkov. „Finit element model of pipeline discretization by prismatic elements“. IOP Conference Series: Materials Science and Engineering 698 (18.12.2019): 066012. http://dx.doi.org/10.1088/1757-899x/698/6/066012.
Der volle Inhalt der QuelleGong, Jian, John L. Volakis und Helen T. G. Wang. „Efficient finite element simulation of slot antennas using prismatic elements“. Radio Science 31, Nr. 6 (November 1996): 1837–44. http://dx.doi.org/10.1029/96rs02423.
Der volle Inhalt der QuelleLEUNG, A. Y. T., und B. ZHU. „HEXAHEDRAL FOURIER p-ELEMENTS FOR VIBRATION OF PRISMATIC SOLIDS“. International Journal of Structural Stability and Dynamics 04, Nr. 01 (März 2004): 125–38. http://dx.doi.org/10.1142/s0219455404001100.
Der volle Inhalt der QuelleGhesmi, Mahdi, und Bettar Ould el Moctar. „Application of contact elements to represent prismatic mechanical couplings“. MATEC Web of Conferences 272 (2019): 01028. http://dx.doi.org/10.1051/matecconf/201927201028.
Der volle Inhalt der QuelleDharma, Adrian Pramudita, und Bambang Suryoatmono. „Non-Linear Buckling Analysis of Axially Loaded Column with Non-Prismatic I-Section“. Journal of the Civil Engineering Forum 5, Nr. 3 (18.09.2019): 263. http://dx.doi.org/10.22146/jcef.47607.
Der volle Inhalt der QuelleMaksymiuk, Yurii, Andrii Kozak, Ivan Martyniuk und Oleksandr Maksymiuk. „Features of derivation of formulas for calculation of nodal reactions and coefficients of matrix of rigidity of a finite element with averaged mechanical and geometrical parameters“. Building constructions. Theory and Practice, Nr. 8 (29.11.2021): 97–108. http://dx.doi.org/10.32347/2522-4182.8.2021.97-108.
Der volle Inhalt der QuelleCoulomb, J. L., F. X. Zgainski und Y. Marechal. „A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements“. IEEE Transactions on Magnetics 33, Nr. 2 (März 1997): 1362–65. http://dx.doi.org/10.1109/20.582509.
Der volle Inhalt der QuelleBai, Rui, Si-Wei Liu, Siu-Lai Chan und Feng Yu. „Flexural Buckling Strength of Tapered-I-Section Steel Columns Based on ANSI/AISC-360-16“. International Journal of Structural Stability and Dynamics 19, Nr. 11 (23.10.2019): 1950134. http://dx.doi.org/10.1142/s0219455419501347.
Der volle Inhalt der QuelleIvanchenko, Grigory, Yurii Maksimyuk, Andriy Kozak und Ivan Martyniuk. „CONSTRUCTION OF SOLVING EQUATIONS OF SEMI-ANALYTICAL METHOD OF FINISHED ELEMENTS FOR PRISMATIC BODIES OF COMPLEX SHAPE“. Management of Development of Complex Systems, Nr. 46 (24.06.2021): 55–62. http://dx.doi.org/10.32347/2412-9933.2021.46.55-62.
Der volle Inhalt der QuelleSuprun, T. T. „LOCAL APPROACH FOR EVALUATING HEAT TRANSFER OF PRISMATIC ELEMENTS ON A FLAT SURFACE“. Eurasian Physical Technical Journal 18, Nr. 3 (37) (24.09.2021): 43–47. http://dx.doi.org/10.31489/2021no3/43-47.
Der volle Inhalt der QuelleDissertationen zum Thema "PRISMATIC ELEMENT"
Vijayakar, Sandeep M. „Finite element methods for quasi-prismatic bodies with application to gears /“. The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487335992904337.
Der volle Inhalt der QuelleWalker, B. D. „A combined finite strip/finite element method for the analysis of partially prismatic thin-walled structures“. Thesis, University of Southampton, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375679.
Der volle Inhalt der QuelleDia, Mouhamadou. „Hexahedral and prismatic solid-shell for nonlinear analysis of thin and medium-thick structures“. Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI040.
Der volle Inhalt der QuelleThin or medium-thick structures are naturally present in most power generation facilities: reactor building, pressurized pipelines, metal tanks or tarpaulins, reactor vessel, metal liners of containment chambers, to name but a few. A need currently expressed by EDF's engineering units is the modeling of the blistering phenomena of metal liners in reactor facilities. A liner is a metal sheet type structure that provides the impermeability function of nuclear power plants. Its modeling requires taking into account a contact-friction phenomenon causing pinching on the shell, plasticity under the effect of blistering and geometric nonlinearity (buckling type instability). To model the thermo-mechanical behavior of such a structure, the finite elements of plates and shells currently available do not seem to be up to the task. The first limitation attributable to these elements is the assumption of plane stresses which prevents the consideration of some natively three-dimensional constitutive laws. Secondly, due to their formulation with rotational degrees of freedom these elements do not offer facility of use when solving problems that take into account non-linear effects such as large geometric transformations, bi-facial friction-contact, buckling and following pressures. An alternative would be to use standard volume elements. However, the prohibitive computing cost of the latter is difficult to access for many industrial applications. The aim of this work is to propose a solution to this problem. We have proposed a solid-shell finite element formulation enriched in their pinching stress and strain and capable of reproducing accurately the behaviour of thin structures. This new finite element works with any type of three-dimensional behaviour law without restriction on stress fields. It can also be used for all types of mechanical problems: linear and nonlinear, frictional contact, large transformation, buckling, displacement-dependent pressure, etc. The numerical simulations carried out show satisfactory performances
Truscott, Simon. „A heterogenous three-dimensional computational model for wood drying“. Thesis, Queensland University of Technology, 2004. https://eprints.qut.edu.au/15960/1/Simon_Trustcott_Thesis.pdf.
Der volle Inhalt der QuelleTruscott, Simon. „A heterogenous three-dimensional computational model for wood drying“. Queensland University of Technology, 2004. http://eprints.qut.edu.au/15960/.
Der volle Inhalt der QuelleLi, Weibing. „Prismatic modular robotics enabled through active and passive elements“. Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/20112/.
Der volle Inhalt der QuelleEvcimen, Taylan Ulas. „The Effect Of Prismatic Roughness Elemnts On Hydraulic Jump“. Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605792/index.pdf.
Der volle Inhalt der QuelleWinder, Brian Geoffrey. „Achieving Complex Motion with Fundamental Components for Lamina Emergent Mechanisms“. Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2279.pdf.
Der volle Inhalt der QuelleBANSAL, ABHISHEK. „INFLUENCE OF SHAPE FACTOR OF PRISMATIC ELEMENT ON THE ENERGY OF RAYLEIGH WAVES“. Thesis, 2019. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16965.
Der volle Inhalt der QuelleMacho, Gabriele A., D. Shimizu und I. R. Spears. „The effect of prism orientation and loading direction on contact stresses in prismatic enamel: implications for interpreting wear patterns“. 2005. http://hdl.handle.net/10454/3551.
Der volle Inhalt der QuelleThe ability of prisms to effectively dissipate contact stress at the surface will influence wear rates in teeth. The aim of this investigation was to begin to quantify the effect of prism orientation on surface stresses. Seven finite element models of enamel microstructure were created, each model differing in the angulation of prism orientation with regard to the wear surface. For validation purposes, the mechanical behavior of the model was compared with published experimental data. In order to test the enamel under lateral loads, a compressed food particle was dragged across the surface from the dentino-enamel junction (DEJ) towards the outer enamel surface (OES). Under these conditions, tensile stresses in the enamel model increased with increases in the coefficient of friction. More importantly, stresses were found to be lowest in models in which the prisms approach the surface at lower angles (i.e., more obliquely cut prisms), and highest when the prisms approached the surface at 60° (i.e., less obliquely cut). Finally, the direction of travel of the simulated food particle was reversed, allowing comparison of the difference in behavior between trailing and leading edge enamels (i.e., when the food particle was dragged either towards or away from the DEJ). Stresses at the trailing edge were usually lower than stresses at the leading edge. Taken together with what is known about prism orientation in primate teeth, such findings imply greater wear resistance at the intercuspal region and less wear resistance at the lateral enamel at midcrown. Such findings appear to be supported by archeological evidence.
Bücher zum Thema "PRISMATIC ELEMENT"
Hu, Yandong. Electrokinetic transport in microchannels with three-dimensional prismatic elements on the surface. 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "PRISMATIC ELEMENT"
Oñate, Eugenio. „Prismatic Structures. Finite Strip and Finite Prism Methods“. In Structural Analysis with the Finite Element Method Linear Statics, 675–728. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8743-1_11.
Der volle Inhalt der QuelleHinton, Ernest, Johann Sienz und Mustafa Özakça. „Basic Finite Element Formulation for Shells of Revolution“. In Analysis and Optimization of Prismatic and Axisymmetric Shell Structures, 127–40. London: Springer London, 2003. http://dx.doi.org/10.1007/978-0-85729-424-1_4.
Der volle Inhalt der QuelleHinton, Ernest, Johann Sienz und Mustafa Özakça. „Basic Finite Element Formulation for Vibrating Axisymmetric Shells“. In Analysis and Optimization of Prismatic and Axisymmetric Shell Structures, 245–78. London: Springer London, 2003. http://dx.doi.org/10.1007/978-0-85729-424-1_7.
Der volle Inhalt der QuelleChaudhury, Arkadeep Narayan, Arnab Ghosh, Krishnendu Banerjee, Abhijit Mondal und Debasis Datta. „Analysis of Prismatic Springs of Non-circular Coil Shape Using Finite Element Method“. In Lecture Notes in Mechanical Engineering, 243–51. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2740-3_24.
Der volle Inhalt der QuelleFontenla-Carrera, Gabriel, Ángel Manuel Fernández Vilán und Pablo Izquierdo Belmonte. „Automatic Identification of Kinematic Diagrams with Computer Vision“. In Proceedings of the XV Ibero-American Congress of Mechanical Engineering, 425–31. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38563-6_62.
Der volle Inhalt der QuelleEslami, M. Reza. „Torsion of Prismatic Bars“. In Finite Elements Methods in Mechanics, 229–36. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08037-6_11.
Der volle Inhalt der QuelleCuomo, M., A. Greco und M. Romano. „Eigenfrequencies Estimates for Structures with Non-Prismatic Elements“. In Numerical Treatment of Eigenvalue Problems Vol.4 / Numerische Behandlung von Eigenwertaufgaben Band 4, 62–76. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7507-3_6.
Der volle Inhalt der Quelle„Prismatic Pentahedron T9: Assumed Displacement Distribution“. In Finite Element Structural Analysis: New Concepts, 99–105. Reston ,VA: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/5.9781563479991.0099.0105.
Der volle Inhalt der Quelle„Prismatic Pentahedron T10: Assumed Displacement Distribution plus Corrective Distribution Inside the Element Boundaries“. In Finite Element Structural Analysis: New Concepts, 107–17. Reston ,VA: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/5.9781563479991.0107.0117.
Der volle Inhalt der Quelle„10 MOHR CIRCLE OF STRESS WHEN A PRISMATIC ELEMENT IS SUBJECTED TO NORMAL AND SHEAR STRESSES“. In Geotechnical Engineering, 289. CRC Press, 2002. http://dx.doi.org/10.1201/9781482275858-137.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "PRISMATIC ELEMENT"
Pedreiro, Marcelo R. de Matos, Rogério de O. Rodrigues, Maicon Marino Albertini und Jefferson S. Camacho. „EXPLICIT STIFFNESS MATRIX FOR PARABOLIC PRISMATIC TRIANGULAR ELEMENT“. In 10th World Congress on Computational Mechanics. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/meceng-wccm2012-20360.
Der volle Inhalt der QuelleDwarshuis, Koen, Ronald Aarts, Marcel Ellenbroek und Dannis Brouwer. „A Non-Prismatic Beam Element for the Optimization of Flexure Mechanisms“. In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22242.
Der volle Inhalt der QuelleAl-Bedoor, B. O., und Y. A. Khulief. „Finite Element Dynamic Modeling of Elastic Beam With Prismatic Joint“. In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0080.
Der volle Inhalt der QuelleCosby, Austin, und Ernesto Gutierrez-Miravete. „Finite Element Analysis Conversion Factors for Natural Vibrations of Beams“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37261.
Der volle Inhalt der QuelleYamaguchi, Tadashi, Yoshihiro Kawase, Shunsuke Hori und Yoshiki Iwai. „3-D parallel finite element method with prismatic edge elements for dynamic analysis of electromagnets“. In 2015 18th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2015. http://dx.doi.org/10.1109/icems.2015.7385179.
Der volle Inhalt der QuelleMigliaccio, G. „Stress and strain fields in non-prismatic inhomogeneous beams“. In AIMETA 2022. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902431-27.
Der volle Inhalt der QuelleMocera, Francesco, Elena Vergori und Aurelio Soma. „Finite element versus experimental Thermo-mechanical behaviour of prismatic Li-Ion cell“. In 2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE, 2019. http://dx.doi.org/10.1109/ever.2019.8813653.
Der volle Inhalt der QuelleAmor-Martin, Adrian, Daniel Garcia-Donoro und Luis E. Garcia-Castillo. „Analysis of dispersion error of higher-order curl-conforming prismatic finite element“. In 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO). IEEE, 2017. http://dx.doi.org/10.1109/nemo.2017.7964234.
Der volle Inhalt der QuelleSitaram, Pattabhi, Bipin Pai und Rachel Mok. „Elasto-Plastic Analysis of Prismatic Folded Plates by the Finite Element Method“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88195.
Der volle Inhalt der QuellePandya, S., und M. Hafez. „A finite-element approach for modeling inviscid and viscous compressible flows using prismatic grids“. In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3310.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "PRISMATIC ELEMENT"
Beckett-Brown, C. E., A. M. McDonald und M. B. McClenaghan. Discovering a porphyry deposit using tourmaline: a case study from Yukon. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331349.
Der volle Inhalt der Quelle