Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Projective duality“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Projective duality" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Projective duality"
Kuznetsov, Alexander. „Homological projective duality“. Publications mathématiques de l'IHÉS 105, Nr. 1 (Juni 2007): 157–220. http://dx.doi.org/10.1007/s10240-007-0006-8.
Der volle Inhalt der QuellePerry, Alexander. „Noncommutative homological projective duality“. Advances in Mathematics 350 (Juli 2019): 877–972. http://dx.doi.org/10.1016/j.aim.2019.04.052.
Der volle Inhalt der QuelleRennemo, Jørgen Vold, und Ed Segal. „Hori-mological projective duality“. Duke Mathematical Journal 168, Nr. 11 (August 2019): 2127–205. http://dx.doi.org/10.1215/00127094-2019-0014.
Der volle Inhalt der QuelleGarcia, A., und J. F. Voloch. „Duality for projective curves“. Boletim da Sociedade Brasileira de Matem�tica 21, Nr. 2 (September 1991): 159–75. http://dx.doi.org/10.1007/bf01237362.
Der volle Inhalt der QuelleGoerss, Paul G. „Projective and Injective Hopf Algebras Over the Dyer-Lashof Algebra“. Canadian Journal of Mathematics 45, Nr. 5 (01.10.1993): 944–76. http://dx.doi.org/10.4153/cjm-1993-053-9.
Der volle Inhalt der QuelleKuznetsov, Alexander, und Alexander Perry. „Homological projective duality for quadrics“. Journal of Algebraic Geometry 30, Nr. 3 (15.01.2021): 457–76. http://dx.doi.org/10.1090/jag/767.
Der volle Inhalt der QuelleFRISK, ANDERS, und VOLODYMYR MAZORCHUK. „PROPERLY STRATIFIED ALGEBRAS AND TILTING“. Proceedings of the London Mathematical Society 92, Nr. 1 (19.12.2005): 29–61. http://dx.doi.org/10.1017/s0024611505015431.
Der volle Inhalt der QuelleBruce, J. W. „Lines, surfaces and duality“. Mathematical Proceedings of the Cambridge Philosophical Society 112, Nr. 1 (Juli 1992): 53–61. http://dx.doi.org/10.1017/s0305004100070754.
Der volle Inhalt der QuelleBarrett, David E. „Holomorphic projection and duality for domains in complex projective space“. Transactions of the American Mathematical Society 368, Nr. 2 (03.04.2015): 827–50. http://dx.doi.org/10.1090/tran/6338.
Der volle Inhalt der QuelleBenson, D. J., und Jon F. Carlson. „Projective Resolutions and Poincare Duality Complexes“. Transactions of the American Mathematical Society 342, Nr. 2 (April 1994): 447. http://dx.doi.org/10.2307/2154636.
Der volle Inhalt der QuelleDissertationen zum Thema "Projective duality"
Hefez, Abramo. „Duality for projective varieties“. Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/86249.
Der volle Inhalt der QuelleAbuaf, Roland. „Dualité homologique projective et résolutions catégoriques des singularités“. Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM057/document.
Der volle Inhalt der QuelleLet $X$ be an algebraic variety with Gorenstein rational singularities. A crepant resolution of $X$ is often considered to be a minimal resolution of singularities for $X$. Unfortunately, crepant resolution of singularities are very rare. For instance, determinantal varieties of skew-symmetric matrices never admit crepant resolution of singularities. In this thesis, we discuss various notions of categorical crepant resolution of singularities as defined by Alexander Kuznetsov. Conjecturally, these resolutions are minimal from the categorical point of view. We introduce the notion of wonderful resolution of singularities and we prove that a variety endowed with such a resolution admits a weakly crepant resolution of singularities. As a corollary, we prove that all determinantal varieties (square, as well as symmetric and skew-symmetric) admit weakly crepant resolution of singularities. Finally, we study some quartics hypersurfaces which come from the Tits-Freudenthal magic square. Though they do no admit any wonderful resolution of singularities, we are still able to prove that they have a weakly crepant resolution of singularities. This last result should be of interest in order to construct homological projective duals for some symplectic Grassmannians over the composition algebras
Hilburn, Justin. „GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O“. Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20456.
Der volle Inhalt der QuelleContatto, Felipe. „Vortices, Painlevé integrability and projective geometry“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275099.
Der volle Inhalt der QuelleBenchoufi, Mehdi. „Théorie microlocale des faisceaux pour la transformation Radon“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS475.
Der volle Inhalt der QuelleThe subject of this thesis is a microlocal approach to the transformation of Radon. It is a question of applying to real and complex projective duality the techniques initiated in the founding article of Sato-Kashiwara-Kawai of 1972 and to find, reformulate, improve more classic analytical work on this subject, in particular those of G. Henkin or S. Gindikin. Pro-jective duality seen from the microlocal and sheaf point of view appeared for the first time in an important work by J-L. Brylinski on perverse sheaves, work then taken up by D'Agnolo and Schapira in the framework of D-modules. Our work is to systematically resume this study with the new tools of the microlocal sheaf theory (theory which did not exist at the time of SKK72). This work essentially consists of two parts. In the first, we begin by recalling in a general framework the construction of quantized ca-nonical transformations, under the hypothesis of the existence of a simple non-degenerate section (introduced under another name by J. Leray). This construction had never been done in a global framework outside the projective case. We then show that these transfor-mations exchange the action of the microdifferential operators. This is a fundamental re-sult without any consistent proof existing in the literature, this result being more or less implied in SKK72. The second part of the thesis deals with the applications to the “classical” Radon trans-form. The basic idea is that this transform exchanges the support of hyperfunctions (modu-lo analyticity) and the analytic wavefront set. We thus obtain theorems of continuation or uniqueness on linearly concave domain. We also get a residue theorem for the boundary values of finite cohomology classes defined on cones with (1, n-1) signature, substantially clari-fying the work of Cordaro-Gindikin-Trèves
Tur, Laurent. „Dualité étrange sur le plan projectif“. Nice, 2003. http://www.theses.fr/2003NICE4089.
Der volle Inhalt der QuelleDANILA, GENTIANA. „Formule de verlinde et dualite etrange sur le plan projectif“. Paris 7, 1999. http://www.theses.fr/1999PA077065.
Der volle Inhalt der QuelleWilfer, Oleg. „Duality investigations for multi-composed optimization problems with applications in location theory“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222660.
Der volle Inhalt der QuelleWeimann, Martin. „La trace en géométrie projective et torique“. Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00136109.
Der volle Inhalt der Quellel'aide du calcul résiduel dans les cadres projectifs et toriques.
Dans la première partie, on obtient une caractérisation algébrique des formes traces sur une hypersurface analytique à l'aide du calcul résiduel élémentaire d'une variable. En conséquence, une version plus forte du théorème d'Abel-inverse de Henkin et Passare est prouvée. On montre que ce théorème est conséquence de la rigidité d'un système différentiel particulier lié à une équation de type ”onde de choc” et on établit le lien avec le théorème de Wood sur l'algébricité d'une famille de germes d'hypersurfaces analytiques. Enfin, on obtient une nouvelle méthode pour calculer la dimension de l'espace des formes abéliennes de degré maximal sur une hypersurface projective.
Dans la seconde partie, on caractérise de manière combinatoire les familles de fibrés en droites permettant de définir une notion intrinsèque de concavité dans une variété torique complète lisse et on étudie les ensembles analytiques dégénérés correspondants. On étend ainsi la notion de trace au cas torique. Courants résidus, résidus toriques et résultants donnent une borne optimale sur le degrés des traces en les différents paramètres. Si la variété torique est projective, on obtient finalement une version torique des théorèmes de Wood et d'Abel-inverse, permettant une description plus précise du support du polynôme construit dans le cas hypersurface.
Phan, Tran Duc Minh. „Une méthode de dualité pour des problèmes non convexes du Calcul des Variations“. Thesis, Toulon, 2018. http://www.theses.fr/2018TOUL0006/document.
Der volle Inhalt der QuelleIn this thesis, we study a general principle of convexification to treat certain non convex variationalproblems in Rd. Thanks to this principle we are able to enforce the powerful duality techniques andbring back such problems to primal-dual formulations in Rd+1, thus making efficient the numericalsearch of a global minimizer. A theory of duality and calibration fields is reformulated in the caseof linear-growth functionals. Under suitable assumptions, this allows us to revisit and extend anexclusion principle discovered by Visintin in the 1990s and to reduce the original problem to theminimization of a convex functional in Rd. This result is then applied successfully to a class offree boundary or multiphase problems that we treat numerically obtaining very accurate interfaces.On the other hand we apply the theory of calibrations to a classical problem of minimal surfaceswith free boundary and establish new results related to the comparison with its variant where theminimal surfaces functional is replaced by the total variation. We generalize the notion of calibrabilityintroduced by Caselles-Chambolle and Al. and construct explicitly a dual solution for the problemassociated with the second functional by using a locally Lipschitzian potential related to the distanceto the cut-locus. The last part of the thesis is devoted to primal-dual optimization algorithms forthe search of saddle points, introducing new more efficient variants in precision and computationtime. In particular, we experiment a semi-implicit variant of the Arrow-Hurwicz method whichallows to reduce drastically the number of iterations necessary to obtain a sharp accuracy of theinterfaces. Eventually we tackle the structural non-differentiability of the Lagrangian arising fromour method by means of a geometric projection method on the epigraph, thus offering an alternativeto all classical regularization methods
Bücher zum Thema "Projective duality"
Kunz, Ernst. Residues and Duality for Projective Algebraic Varieties. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/ulect/047.
Der volle Inhalt der QuelleResidues and duality for projective algebraic varieties. Providence, R.I: American Mathematical Society, 2008.
Den vollen Inhalt der Quelle findenBlecher, David P. Categories of operator modules: Morita equivalence and projective modules. Providence, R.I: American Mathematical Society, 2000.
Den vollen Inhalt der Quelle findenAbe, Takeshi. Strange duality for parabolic symplectic bundles on a pointed projective line. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2008.
Den vollen Inhalt der Quelle findenProjective Duality and Homogeneous Spaces. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/b138367.
Der volle Inhalt der QuelleProjective Duality and Homogeneous Spaces. Springer Berlin / Heidelberg, 2010.
Den vollen Inhalt der Quelle findenTevelev, Evgueni A. Projective Duality and Homogeneous Spaces. Springer London, Limited, 2005.
Den vollen Inhalt der Quelle findenProjective Duality and Homogeneous Spaces (Encyclopaedia of Mathematical Sciences). Springer, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Projective duality"
Faure, Claude-Alain, und Alfred Frölicher. „Duality“. In Modern Projective Geometry, 255–73. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9590-2_11.
Der volle Inhalt der QuelleCoxeter, H. S. M. „The Principle of Duality“. In Projective Geometry, 24–32. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-6385-2_3.
Der volle Inhalt der QuelleCiblac, Thierry, und Jean-Claude Morel. „Projective Properties and Duality“. In Sustainable Masonry, 155–90. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119003564.ch8.
Der volle Inhalt der QuellePositselski, Leonid. „Flat and Finitely Projective Koszulity“. In Relative Nonhomogeneous Koszul Duality, 9–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89540-2_2.
Der volle Inhalt der QuelleUrquhart, Alasdair. „Duality Theory for Projective Algebras“. In Relational Methods in Computer Science, 33–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11734673_3.
Der volle Inhalt der QuelleReider, Igor. „J(X; L, d) and the Langlands Duality“. In Nonabelian Jacobian of Projective Surfaces, 197–212. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35662-9_12.
Der volle Inhalt der QuelleFillastre, François, und Andrea Seppi. „Spherical, hyperbolic, and other projective geometries: convexity, duality, transitions“. In Eighteen Essays in Non-Euclidean Geometry, 321–409. Zuerich, Switzerland: European Mathematical Society Publishing House, 2019. http://dx.doi.org/10.4171/196-1/16.
Der volle Inhalt der QuelleGeorg Schaathun, Hans. „Duality and Greedy Weights of Linear Codes and Projective Multisets“. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 92–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45624-4_10.
Der volle Inhalt der QuelleConradt, Oliver. „The Principle of Duality in Clifford Algebra and Projective Geometry“. In Clifford Algebras and their Applications in Mathematical Physics, 157–93. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1368-0_10.
Der volle Inhalt der QuelleSTOLFI, JORGE. „Duality“. In Oriented Projective Geometry, 83–93. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-12-672025-9.50013-7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Projective duality"
Skala, Vaclav. „Projective geometry and duality for graphics, games and visualization“. In SIGGRAPH Asia 2012 Courses. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2407783.2407793.
Der volle Inhalt der QuelleRAFTOPOULOS, DIONYSIOS G. „Projective Geometrical Space, Duality, Harmonicity and the Inverse Square Law“. In Unified Field Mechanics II: Preliminary Formulations and Empirical Tests, 10th International Symposium Honouring Mathematical Physicist Jean-Pierre Vigier. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813232044_0046.
Der volle Inhalt der QuelleSkala, Vaclav. „Projective geometry, duality and Plücker coordinates for geometric computations with determinants on GPUs“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992684.
Der volle Inhalt der QuelleWang, Geyang, Yao Zhao, Chunyu Lin, Meiqin Liu und Jian Jin. „Dually Octagonal Projection for 360 Video with Less-Distortion Introduced“. In 2020 15th IEEE International Conference on Signal Processing (ICSP). IEEE, 2020. http://dx.doi.org/10.1109/icsp48669.2020.9320966.
Der volle Inhalt der Quelle