Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Q-learning“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Q-learning" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Q-learning"
Watkins, Christopher J. C. H., und Peter Dayan. „Q-learning“. Machine Learning 8, Nr. 3-4 (Mai 1992): 279–92. http://dx.doi.org/10.1007/bf00992698.
Der volle Inhalt der QuelleClausen, C., und H. Wechsler. „Quad-Q-learning“. IEEE Transactions on Neural Networks 11, Nr. 2 (März 2000): 279–94. http://dx.doi.org/10.1109/72.839000.
Der volle Inhalt der Quelleten Hagen, Stephan, und Ben Kr�se. „Neural Q-learning“. Neural Computing & Applications 12, Nr. 2 (01.11.2003): 81–88. http://dx.doi.org/10.1007/s00521-003-0369-9.
Der volle Inhalt der QuelleWang, Yin-Hao, Tzuu-Hseng S. Li und Chih-Jui Lin. „Backward Q-learning: The combination of Sarsa algorithm and Q-learning“. Engineering Applications of Artificial Intelligence 26, Nr. 9 (Oktober 2013): 2184–93. http://dx.doi.org/10.1016/j.engappai.2013.06.016.
Der volle Inhalt der QuelleEvseenko, Alla, und Dmitrii Romannikov. „Application of Deep Q-learning and double Deep Q-learning algorithms to the task of control an inverted pendulum“. Transaction of Scientific Papers of the Novosibirsk State Technical University, Nr. 1-2 (26.08.2020): 7–25. http://dx.doi.org/10.17212/2307-6879-2020-1-2-7-25.
Der volle Inhalt der QuelleAbedalguni, Bilal. „Bat Q-learning Algorithm“. Jordanian Journal of Computers and Information Technology 3, Nr. 1 (2017): 51. http://dx.doi.org/10.5455/jjcit.71-1480540385.
Der volle Inhalt der QuelleZhu, Rong, und Mattia Rigotti. „Self-correcting Q-learning“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 12 (18.05.2021): 11185–92. http://dx.doi.org/10.1609/aaai.v35i12.17334.
Der volle Inhalt der QuelleBorkar, Vivek S., und Siddharth Chandak. „Prospect-theoretic Q-learning“. Systems & Control Letters 156 (Oktober 2021): 105009. http://dx.doi.org/10.1016/j.sysconle.2021.105009.
Der volle Inhalt der QuelleGanger, Michael, und Wei Hu. „Quantum Multiple Q-Learning“. International Journal of Intelligence Science 09, Nr. 01 (2019): 1–22. http://dx.doi.org/10.4236/ijis.2019.91001.
Der volle Inhalt der QuelleJohn, Indu, Chandramouli Kamanchi und Shalabh Bhatnagar. „Generalized Speedy Q-Learning“. IEEE Control Systems Letters 4, Nr. 3 (Juli 2020): 524–29. http://dx.doi.org/10.1109/lcsys.2020.2970555.
Der volle Inhalt der QuelleDissertationen zum Thema "Q-learning"
Gaskett, Chris, und cgaskett@it jcu edu au. „Q-Learning for Robot Control“. The Australian National University. Research School of Information Sciences and Engineering, 2002. http://thesis.anu.edu.au./public/adt-ANU20041108.192425.
Der volle Inhalt der QuelleGaskett, Chris. „Q-Learning for robot control“. View thesis entry in Australian Digital Theses Program, 2002. http://eprints.jcu.edu.au/623/1/gaskettthesis.pdf.
Der volle Inhalt der QuelleLaivamaa, J. (Juuso). „Reinforcement Q-Learning using OpenAI Gym“. Bachelor's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201903151329.
Der volle Inhalt der QuelleDel, Ben Enrico <1997>. „Reinforcement Learning: a Q-Learning Algorithm for High Frequency Trading“. Master's Degree Thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/20411.
Der volle Inhalt der QuelleKarlsson, Daniel. „Hyperparameter optimisation using Q-learning based algorithms“. Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-78096.
Der volle Inhalt der QuelleMaskininlärningsalgoritmer har många tillämpningsområden, både akademiska och inom industrin. Exempel på tillämpningar är, klassificering av diffraktionsmönster inom materialvetenskap och klassificering av egenskaper hos kemiska sammansättningar inom läkemedelsindustrin. För att dessa algoritmer ska prestera bra behöver de optimeras. En del av optimering sker vid träning av algoritmerna, men det finns komponenter som inte kan tränas. Dessa hyperparametrar måste justeras separat. Fokuset för det här arbetet var optimering av hyperparametrar till klassificeringsalgoritmer baserade på faltande neurala nätverk. Syftet med avhandlingen var att undersöka möjligheterna att använda förstärkningsinlärningsalgoritmer, främst ''Q-learning'', som den optimerande algoritmen. Tre olika algoritmer undersöktes, ''Q-learning'', dubbel ''Q-learning'' samt en algoritm inspirerad av ''Q-learning'', denna utvecklades under arbetets gång. Algoritmerna utvärderades på olika testproblem och jämfördes mot resultat uppnådda med en slumpmässig sökning av hyperparameterrymden, vilket är en av de vanligare metoderna för att optimera den här typen av algoritmer. Alla tre algoritmer påvisade någon form av inlärning, men endast den ''Q-learning'' inspirerade algoritmen presterade bättre än den slumpmässiga sökningen. En iterativ implemetation av den ''Q-learning'' inspirerade algoritmen utvecklades också. Den iterativa metoden tillät den tillgängliga hyperparameterrymden att förfinas mellan varje iteration. Detta medförde ytterligare förbättringar av resultaten som indikerade att beräkningstiden i vissa fall kunde minskas med upp till 40% jämfört med den slumpmässiga sökningen med bibehållet eller förbättrat resultat.
Finnman, Peter, und Max Winberg. „Deep reinforcement learning compared with Q-table learning applied to backgammon“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186545.
Der volle Inhalt der QuellePatel, Purvag. „Improving Computer Game Bots' behavior using Q-Learning“. Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1966544161&sid=3&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Der volle Inhalt der QuelleBurkov, Andriy. „Adaptive Dynamics Learning and Q-initialization in the Context of Multiagent Learning“. Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24476/24476.pdf.
Der volle Inhalt der QuelleMultiagent learning is a promising direction of the modern and future research in the context of intelligent systems. While the single-agent case has been well studied in the last two decades, the multiagent case has not been broadly studied due to its complex- ity. When several autonomous agents learn and act simultaneously, the environment becomes strictly unpredictable and all assumptions that are made in single-agent case, such as stationarity and the Markovian property, often do not hold in the multiagent context. In this Master’s work we study what has been done in this research field, and propose an original approach to multiagent learning in presence of adaptive agents. We explain why such an approach gives promising results by comparing it with other different existing approaches. It is important to note that one of the most challenging problems of all multiagent learning algorithms is their high computational complexity. This is due to the fact that the state space size of multiagent problem is exponential in the number of agents acting in the environment. In this work we propose a novel approach to the complexity reduction of the multiagent reinforcement learning. Such an approach permits to significantly reduce the part of the state space needed to be visited by the agents to learn an efficient solution. Then we evaluate our algorithms on a set of empirical tests and give a preliminary theoretical result, which is first step in forming the basis of validity of our approaches to multiagent learning.
Cunningham, Bryan. „Non-Reciprocating Sharing Methods in Cooperative Q-Learning Environments“. Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/34610.
Der volle Inhalt der QuelleMaster of Science
Andersson, Gabriel, und Martti Yap. „Att spela 'Breakout' med hjälp av 'Deep Q-Learning'“. Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255799.
Der volle Inhalt der QuelleWe cover in this report the implementation of a reinforcement learning (RL) algorithm capable of learning how to play the game 'Breakout' on the Atari Learning Environment (ALE). The non-human player (agent) is given no prior information of the game and must learn from the same sensory input that a human would typically receive when playing the game. The aim is to reproduce previous results by optimizing the agent driven control of 'Breakout' so as to surpass a typical human score. To this end, the problem is formalized by modeling it as a Markov Decision Process. We apply the celebrated Deep Q-Learning algorithm with action masking to achieve an optimal strategy. We find our agent's average score to be just below the human benchmarks: achieving an average score of 20, approximately 65% of the human counterpart. We discuss a number of implementations that boosted agent performance, as well as further techniques that could lead to improvements in the future.
Bücher zum Thema "Q-learning"
Wiederhold, Chuck. The Q-matrix: Cooperative learning and critical thinking. San Juan Capistrano, CA: Kagan Cooperative Learning, 1995.
Den vollen Inhalt der Quelle findenauthor, Pereira Penny, und Health Foundation (Great Britain), Hrsg. Building Q: Learning from designing a large scale improvement community. London: The Health Foundation, 2016.
Den vollen Inhalt der Quelle findenNational Advisory Council for Education and Training Targets. New national Learning targets for England for 2002: Q&A document on national, regional and local implementation. Sudbury: Department for Education and Employment, 2002.
Den vollen Inhalt der Quelle findenKimple, James A. Eye Q and the efficient learner. Santa Ana, Calif: Optometric Extension Program Foundation, Inc., 1997.
Den vollen Inhalt der Quelle findenLacey, Greg. Q&A modern world history. London: Letts Educational, 1999.
Den vollen Inhalt der Quelle findenʻAzzāwī, ʻAbd al-Raḥmān Ḥusayn. al- Manhajīyah al-tārīkhīyah fī al-ʻIrāq ilá q. 4 H. /10 M. Baghdād: Dār al-Shuʾūn al-Thaqāfīyah al-ʻĀmmah "Āfāq ʻArabīyah", 1988.
Den vollen Inhalt der Quelle findenMorrison, Liz. Project Manager: Q Learning (Q Learning S.). Hodder & Stoughton, 2003.
Den vollen Inhalt der Quelle findenPsaris, Nick. Fun Q: A Functional Introduction to Machine Learning in Q. Vector SIGMA, 2020.
Den vollen Inhalt der Quelle findenHabib, Nazia. Hands-On Q-Learning with Python: Practical Q-Learning with OpenAI Gym, Keras, and TensorFlow. Packt Publishing, Limited, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Q-learning"
Stone, Peter, Xin Jin, Jiawei Han, Sanjay Jain und Frank Stephan. „Q-Learning“. In Encyclopedia of Machine Learning, 819. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_683.
Der volle Inhalt der QuelleStone, Peter. „Q-Learning“. In Encyclopedia of Machine Learning and Data Mining, 1. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4899-7502-7_689-1.
Der volle Inhalt der QuelleStone, Peter. „Q-Learning“. In Encyclopedia of Machine Learning and Data Mining, 1033. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_689.
Der volle Inhalt der QuelleLi, Jinna, Frank L. Lewis und Jialu Fan. „Interleaved Q-Learning“. In Reinforcement Learning, 155–83. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28394-9_6.
Der volle Inhalt der QuelleSengupta, Nandita, und Jaya Sil. „Q-Learning Classifier“. In Intrusion Detection, 83–111. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2716-6_4.
Der volle Inhalt der QuelleHu, Zhihui, Yubin Jiang, Xinghong Ling und Quan Liu. „Accurate Q-Learning“. In Neural Information Processing, 560–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04182-3_49.
Der volle Inhalt der QuelleGoldberg, Yair, Rui Song und Michael R. Kosorok. „Adaptive Q-learning“. In Institute of Mathematical Statistics Collections, 150–62. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2013. http://dx.doi.org/10.1214/12-imscoll911.
Der volle Inhalt der QuelleStanko, Silvestr, und Karel Macek. „CVaR Q-Learning“. In Studies in Computational Intelligence, 333–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70594-7_14.
Der volle Inhalt der QuelleSanghi, Nimish. „Deep Q-Learning“. In Deep Reinforcement Learning with Python, 155–206. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6809-4_6.
Der volle Inhalt der QuelleLiu, Mark. „Deep Q-Learning“. In Machine Learning, Animated, 322–38. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/b23383-17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Q-learning"
Kantasewi, Nitchakun, Sanparith Marukatat, Somying Thainimit und Okumura Manabu. „Multi Q-Table Q-Learning“. In 2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). IEEE, 2019. http://dx.doi.org/10.1109/ictemsys.2019.8695963.
Der volle Inhalt der QuelleLu, Fan, Prashant G. Mehta, Sean P. Meyn und Gergely Neu. „Convex Q-Learning“. In 2021 American Control Conference (ACC). IEEE, 2021. http://dx.doi.org/10.23919/acc50511.2021.9483244.
Der volle Inhalt der QuelleReid, Cameron, und Snehasis Mukhopadhyay. „Mutual Q-learning“. In 2020 3rd International Conference on Control and Robots (ICCR). IEEE, 2020. http://dx.doi.org/10.1109/iccr51572.2020.9344374.
Der volle Inhalt der QuelleZhang, Zongzhang, Zhiyuan Pan und Mykel J. Kochenderfer. „Weighted Double Q-learning“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/483.
Der volle Inhalt der QuelleSchilperoort, Jits, Ivar Mak, Madalina M. Drugan und Marco A. Wiering. „Learning to Play Pac-Xon with Q-Learning and Two Double Q-Learning Variants“. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2018. http://dx.doi.org/10.1109/ssci.2018.8628782.
Der volle Inhalt der QuelleNguyen, Thanh, und Snehasis Mukhopadhyay. „Selectively decentralized Q-learning“. In 2017 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2017. http://dx.doi.org/10.1109/smc.2017.8122624.
Der volle Inhalt der QuellePandey, Punit, und Deepshikha Pandey. „Reduct based Q-learning“. In the 2011 International Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1947940.1948001.
Der volle Inhalt der QuelleKok, Jelle R., und Nikos Vlassis. „Sparse cooperative Q-learning“. In Twenty-first international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1015330.1015410.
Der volle Inhalt der QuelleSzepesvári, Csaba, und William D. Smart. „Interpolation-based Q-learning“. In Twenty-first international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1015330.1015445.
Der volle Inhalt der QuelleEdwards, Ashley, und William M. Pottenger. „Higher order Q-Learning“. In 2011 Ieee Symposium On Adaptive Dynamic Programming And Reinforcement Learning. IEEE, 2011. http://dx.doi.org/10.1109/adprl.2011.5967385.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Q-learning"
Martinson, Eric, Alexander Stoytchev und Ronald Arkin. Robot Behavioral Selection Using Q-learning. Fort Belvoir, VA: Defense Technical Information Center, Januar 2002. http://dx.doi.org/10.21236/ada640010.
Der volle Inhalt der QuelleGoodrich, Michael A., und Morgan Quigley. Satisficing Q-Learning: Efficient Learning in Problems With Dichotomous Attributes. Fort Belvoir, VA: Defense Technical Information Center, Januar 2004. http://dx.doi.org/10.21236/ada451568.
Der volle Inhalt der QuelleCeren, Roi, Prashant Doshi, Matthew Meisel, Adam Goodie und Dan Hall. Behaviorally Modeling Games of Strategy Using Descriptive Q-learning. Fort Belvoir, VA: Defense Technical Information Center, Januar 2013. http://dx.doi.org/10.21236/ada575140.
Der volle Inhalt der QuelleOakley, Louise. K4D International Nature Learning Journey Summary. Institute of Development Studies, September 2022. http://dx.doi.org/10.19088/k4d.2022.129.
Der volle Inhalt der QuelleAydin, Orhun. Deep Q-Learning Framework for Quantitative Climate Change Adaptation Policy for Florida Road Network due to Extreme Precipitation. Purdue University, Oktober 2023. http://dx.doi.org/10.5703/1288284317673.
Der volle Inhalt der QuelleGarcía Ferro, Luz Ángela, Elba N. Luna, Lorena Rodríguez, Micha Van Waesberghe und Darinka Vásquez Jordán. Peer Assist. Inter-American Development Bank, Juni 2012. http://dx.doi.org/10.18235/0009034.
Der volle Inhalt der QuelleRinuado, Christina, William Leonard, Christopher Morey, Theresa Coumbe, Jaylen Hopson und Robert Hilborn. Artificial intelligence (AI)–enabled wargaming agent training. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48419.
Der volle Inhalt der QuelleSoliciting opinions and solutions on the "Q Zhang's Problem". BDICE, März 2023. http://dx.doi.org/10.58911/bdic.2023.03.001.
Der volle Inhalt der Quelle