Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Quantum dots glass.

Zeitschriftenartikel zum Thema „Quantum dots glass“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Quantum dots glass" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Zhang, Jian, und Jia Wei Sheng. „Copper Quantum Dots Formation in a Borosilicate Glass“. Journal of Nano Research 32 (Mai 2015): 66–70. http://dx.doi.org/10.4028/www.scientific.net/jnanor.32.66.

Der volle Inhalt der Quelle
Annotation:
This Borosilicate glass offers superior properties to the ordinary silicate glass. Metallic quantum dots embedded in glass are promising materials which can be used in modern optical devices. However, the introduction of metallic quantum dots into borosilicate glass has not been studied. We investigated the formation of copper quantum dots in Cu-doped borosilicate glass matrix using thermal annealing process. The reductant SnO included in borosilicate glass played an important role in the formation of the metallic quantum dots. Specifically, Cu quantum dots were formed only when SnO content reached at least 0.5 wt% after borosilicate glass was heated at 600 °C for 60min, which was evidenced by the detection of the characteristic absorption band at about 560nm originated from the surface plasmon resonance of Cu nanoparticles. The optimal concentration of SnO was found to be 1.5 wt% and the mean size for the heating-induced Cu quantum dots was calculated to be ~1.7 nm. Our data offer a simple approach to prepare the metallic quantum dots in borosilicate glass matrix and suggest a new type of metallic quantum dots for applications where superior durability, chemical and heat resistance are required.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kim, Bok Hyeon, Dong Hoon Son, Seongmin Ju, Chaehwan Jeong, Seongjae Boo, Cheol Jin Kim und Won-Taek Han. „Effect of Aluminum on the Formation of Silver Metal Quantum Dots in Sol–Gel Derived Alumino-Silicate Glass Film“. Journal of Nanoscience and Nanotechnology 6, Nr. 11 (01.11.2006): 3399–403. http://dx.doi.org/10.1166/jnn.2006.020.

Der volle Inhalt der Quelle
Annotation:
The effect of aluminum incorporation on silver metal quantum dots formation in the alumino-silicate glass film processed by sol–gel process was investigated. The sol–gel derived glass was coated onto the silica glass plate by spin coating with the mixture solution of tetraethyl orthosilicate (TEOS), C2H5OH, H2O, AgNO3, Al(NO3)3·9H2O, and HNO3 with the molar ratios of Ag/Si = 0.12 and Al/Si varying from 0 to 0.12. The formation of the silver metal quantum dots was confirmed by the measurements of the UV/VISoptical spectra, the X-ray diffraction patterns, and the transmission electron microscope images. While the radius of silver metal quantum dots increased with the increase of aluminum concentration, the concentration of the silver metal quantum dots decreased. The formation of the silver metal quantum dots was found strongly suppressed by incorporation of aluminum ions in the glass. The change in the glass structure due to the aluminum incorporation was investigated by the analysis of the Raman spectra. The silver ions in the glass contributed to form stable (Al:Ag)O4 tetrahedra by pairing with aluminum ions and thus clustering of silver metal quantum dots was hindered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jia, Rui, De-Sheng Jiang, Ping-Heng Tan und Bao-Quan Sun. „Quantum dots in glass spherical microcavity“. Applied Physics Letters 79, Nr. 2 (09.07.2001): 153–55. http://dx.doi.org/10.1063/1.1380732.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

VERMA, ABHISHEK, P. K. PANDEY, J. KUMAR, S. NAGPAL, P. K. BHATNAGAR und P. C. MATHUR. „GROWTH DYNAMICS OF II–VI COMPOUND SEMICONDUCTOR QUANTUM DOTS EMBEDDED IN BOROSILICATE GLASS MATRIX“. International Journal of Nanoscience 07, Nr. 02n03 (April 2008): 151–60. http://dx.doi.org/10.1142/s0219581x08005250.

Der volle Inhalt der Quelle
Annotation:
Wide bandgap II–VI semiconductor quantum dots embedded in glass matrix have shown great potential for opto-electronic device applications. The current problem is to achieve low size dispersion, high volume fraction, and better control over the size of the quantum dots in glass matrix. In this work, a modified growth method has been proposed to achieve a greater control over the size of quantum dots, to reduce their size dispersion and to increase their volume fraction. A theoretical model has been developed to quantitatively estimate the various parameters of the quantum dots. The effects of aging on various parameters of quantum dots in Semiconductor-Doped Glass (SDG) samples have also been discussed in the present work.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhao, Weigang, Cuirong Liu und Xu Yin. „Cs4PbBr6 Combined with Graphite as Anode for High-Performance Lithium Batteries“. Metals 12, Nr. 10 (23.09.2022): 1584. http://dx.doi.org/10.3390/met12101584.

Der volle Inhalt der Quelle
Annotation:
Cs4PbBr6 quantum dots are glass-based materials. The perovskite structural material of Cs4PbBr6 quantum dots has shown an unexpected electronic performance. However, the glass-based Cs4PbBr6 quantum dots’ capacity becomes weaker when running in charge/discharge. Here, graphite was introduced to Cs4PbBr6 quantum dots using the grinding method to enhance the cycling stability of Cs4PbBr6 quantum dots. The 10%, 25%, 35%, 40%, 75% content Cs4PbBr6 quantum dots were added to graphite (CQDs/G) and CQDs/G as an active material for lithium anode in electronic testing. The test results displayed 35% Cs4PbBr6 quantum dots content in CQDs/G, showing an excellent cycle performance (136.5 mAh g−1 after 1000 cycles at 0.5 A g−1 current density) and good rate ability. Graphite protected the CQDs in the long term, and has high potential economic value.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sonawane, R. S., S. D. Naik, S. K. Apte, M. V. Kulkarni und B. B. Kale. „CdS/CdSSe quantum dots in glass matrix“. Bulletin of Materials Science 31, Nr. 3 (Juni 2008): 495–99. http://dx.doi.org/10.1007/s12034-008-0077-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kaushik, Diksha, Madhulika Sharma, A. B. Sharma und R. K. Pandey. „Study of Self-Organized CdS Q-Dots“. Journal of Nanoscience and Nanotechnology 8, Nr. 8 (01.08.2008): 4303–8. http://dx.doi.org/10.1166/jnn.2008.an38.

Der volle Inhalt der Quelle
Annotation:
Self-organized cadmium sulfide quantum dots assembled using wet synthesis route on glass/ITO as well as Si(100) substrates have been investigated, using X-ray diffraction and transmission electron microscopy. The quantum dots have been shown to grow with a strong (111) orientation with narrow size distribution. Self-organized growth of the quantum dots was examined by high resolution imaging with an atomic force microscope. It is shown that increased self-organization is obtained on silicon substrate. The role of surfactant in imparting self-organization has been invoked to explain the observed morphological features. The as grown Q-dots exhibited size dependent blue shift in the absorption edge. The luminescence behavior of the quantum dots self-organized on glass/ITO as well as Si(100) substrate has also been examined. It is shown that substantial enhancement in luminescence yield is obtained for quantum dots grown on silicon substrate. A model to explain the observed luminescence enhancement has also been presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kolobkova, E. V., A. V. Polyakova, A. N. Abdrshin, N. V. Nikonorov und V. A. Aseev. „Nanostructured glass ceramic based on fluorophosphate glass with PbSe quantum dots“. Glass Physics and Chemistry 41, Nr. 1 (Januar 2015): 127–31. http://dx.doi.org/10.1134/s1087659615010137.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kuznetsova, M. S., R. V. Cherbunin, V. M. Litvyak und E. V. Kolobkova. „Spectroscopy of PbS and PbSe quantum dots in fluorine phosphate glasses“. Физика и техника полупроводников 52, Nr. 5 (2018): 497. http://dx.doi.org/10.21883/ftp.2018.05.45841.30.

Der volle Inhalt der Quelle
Annotation:
AbstractTransmission spectra of the narrow-bandgap semiconductor quantum dots PbS and PbSe in the fluorine phosphate glass are experimentally studied at different temperatures. Energies of 1s exciton transitions observed in the absorption spectra are used to determine characteristic sizes of the quantum dots under study. A nontrivial temperature behavior of the ground and excited quantum confined states in the quantum dots of different sizes are observed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yükselici, M. H., Ç. Allahverdi und H. Athalin. „Zinc incorporation into CdTe quantum dots in glass“. Materials Chemistry and Physics 119, Nr. 1-2 (Januar 2010): 218–21. http://dx.doi.org/10.1016/j.matchemphys.2009.08.057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Cheng, Cheng, Huilü Jiang, Dewei Ma und Xiaoyu Cheng. „An optical fiber glass containing PbSe quantum dots“. Optics Communications 284, Nr. 19 (September 2011): 4491–95. http://dx.doi.org/10.1016/j.optcom.2011.05.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Reynoso, V. C. S., Y. Liu, R. F. C. Royas, J. A. Medeiros Neto, A. M. De Paula, C. L. Cesar, O. L. Alves und L. C. Barbosa. „CdTe quantum dots in Era3+-doped borosilicate glass“. Journal of Materials Science Letters 15, Nr. 21 (Januar 1996): 1879–81. http://dx.doi.org/10.1007/bf00264084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Cotter, D., M. G. Burt und H. P. Girdlestone. „Electroabsorptive behaviour of semiconductor quantum dots in glass“. Semiconductor Science and Technology 5, Nr. 6 (01.06.1990): 631–33. http://dx.doi.org/10.1088/0268-1242/5/6/032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Esch, V., G. Khitrova, H. M. Gibbs, Xu Jiajin, L. C. Liu und S. H. Risbud. „Quantum-confined Franz-Keldysh effect in CdTe quantum dots in glass“. Optics News 15, Nr. 12 (01.12.1989): 26. http://dx.doi.org/10.1364/on.15.12.000026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Zhang, Xizhen, Lizhu Guo, Yuhang Zhang, Chuanhui Cheng, Yi Cheng, Xiangping Li, Jinsu Zhang et al. „Improved photoluminescence quantum yield of CsPbBr 3 quantum dots glass ceramics“. Journal of the American Ceramic Society 103, Nr. 9 (28.05.2020): 5028–35. http://dx.doi.org/10.1111/jace.17225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Eskova, A. E., A. I. Arzhanov, K. A. Magaryan, N. A. Koverga, K. R. Karimullin und A. V. Naumov. „On the impact of the laser radiation wavelength and the concentration of quantum dots on the luminescence spectra of colloid solution and QD-doped nanocomposites“. EPJ Web of Conferences 220 (2019): 03014. http://dx.doi.org/10.1051/epjconf/201922003014.

Der volle Inhalt der Quelle
Annotation:
The influence of the concentration and the laser excitation wavelength on the width and luminescence spectrum maximum of CdSe/CdS /ZnS quantum dots in the toluene solution and doped on the glass plate was studied. It was shown that the wavelength of the exciting laser does not affect the width and peak center of the luminescence spectrum of the samples under the study. Possible mechanisms of the quantum dots concentration influence on studied parameters are analyzed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

ESCH, V., K. KANG, B. FLUEGEL, Y. Z. HU, G. KHITROVA, H. M. GIBBS, S. W. KOCH, N. PEYGAMBARIAN, L. C. LIU und S. H. RISBUD. „OPTICAL PROPERTIES OF CdTe AND CdS QUANTUM DOTS IN GLASS“. Journal of Nonlinear Optical Physics & Materials 01, Nr. 01 (Januar 1992): 25–50. http://dx.doi.org/10.1142/s0218199192000030.

Der volle Inhalt der Quelle
Annotation:
We summarize the linear and nonlinear optical properties of a variety of CdTe and CdS quantum dots in glass. The measured linear absorption of the CdTe sample is compared with calculations involving valence-band mixing due to the quantum confinement. The temperature dependence of the lowest quantum-confined transition and its linewidth for samples with various crystallite sizes are measured and compared with a simple model. It is found that the shift of the energetically lowest quantum-confined transition as a function of temperature is the same as the temperature-dependent band-gap reduction in bulk materials. Excitation of the sample with pulses ranging from femtoseconds to microseconds allows distinguishing between various mechanisms responsible for the observed optical nonlinearities. At very early times, phase-space filling and Coulomb interaction between the excited charged carriers are responsible for the absorption changes. At later times, Coulomb effects due to “trapped” carriers remain and last for nanoseconds or microseconds.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Cao, Thanh Ha, Jong Heo, Yong Kon Kwon, Sanghwa Jeong und Sungjee Kim. „Photoluminescence from PbS quantum dots and PbS/CdS core/shell quantum dots mixed with As2S3 glass“. Journal of Non-Crystalline Solids 431 (Januar 2016): 76–78. http://dx.doi.org/10.1016/j.jnoncrysol.2015.05.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Pang, Xiaoliang, Shuaichen Si, Liqing Xie, Xuejie Zhang, Haozhang Huang, Shuting Liu, Wenxin Xiao et al. „Regulating the morphology and luminescence properties of CsPbBr3 perovskite quantum dots through the rigidity of glass network structure“. Journal of Materials Chemistry C 8, Nr. 48 (2020): 17374–82. http://dx.doi.org/10.1039/d0tc04498a.

Der volle Inhalt der Quelle
Annotation:
The controlled morphology and luminescence properties of CsPbBr3 perovskite quantum dots have been successfully achieved in glass through manipulating the rigidity of glass network structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chaure, Shweta, N. B. Chaure und R. K. Pandey. „Self-Organized CdSSe Quantum Dots Thin Films“. Journal of Nanoscience and Nanotechnology 6, Nr. 3 (01.03.2006): 731–37. http://dx.doi.org/10.1166/jnn.2006.101.

Der volle Inhalt der Quelle
Annotation:
Self-organized and strained CdSSe quantum dot (Q-dot) thin films have been grown on ITO-coated glass substrates bynovel wet chemical route. The Q-dots are (002) oriented faceted pyramids with average particle size of 7.5 nm. The X-ray diffraction results reveal the formation of a solid solution of CdSSe. Atomic force microscopy is used to investigate the morphology of the nanocrystalline thin films. The energy dispersive X-ray analysis spectrum confirms the presence of Cd, S, and Se in the films. Optical absorption and photoluminescence spectra show the blue shift for quantum dot thin films.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Ekimov, A. I. „Optical Properties of Semiconductor Quantum Dots in Glass Matrix“. Physica Scripta T39 (01.01.1991): 217–22. http://dx.doi.org/10.1088/0031-8949/1991/t39/033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Lipovskii, A. A., E. V. Kolobkova, A. Olkhovets, V. D. Petrikov und F. Wise. „Synthesis of monodisperse PbS quantum dots in phosphate glass“. Physica E: Low-dimensional Systems and Nanostructures 5, Nr. 3 (Dezember 1999): 157–60. http://dx.doi.org/10.1016/s1386-9477(99)00037-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Kratzer, Joseph H., und John Schroeder. „Magnetooptic properties of semiconductor quantum dots in glass composites“. Journal of Non-Crystalline Solids 349 (Dezember 2004): 299–308. http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.209.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

El-Rabaie, S., T. A. Taha und A. A. Higazy. „PbTe quantum dots formation in a novel germanate glass“. Journal of Alloys and Compounds 594 (Mai 2014): 102–6. http://dx.doi.org/10.1016/j.jallcom.2014.01.106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Lu, Shulong, Rui Jia, Desheng Jiang und Shushen Li. „Lasing of CdSSe quantum dots in glass spherical microcavity“. Physica E: Low-dimensional Systems and Nanostructures 17 (April 2003): 453–55. http://dx.doi.org/10.1016/s1386-9477(02)00834-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Puls, J., V. Jungnickel, F. Henneberger und A. Schülzgen. „Carrier dynamics in CdSe quantum dots embedded in glass“. Journal of Crystal Growth 138, Nr. 1-4 (April 1994): 1004–9. http://dx.doi.org/10.1016/0022-0248(94)90946-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Yue, Fangyu, Jens W. Tomm, Detlef Kruschke und Peter Glas. „Stimulated emission from PbS-quantum dots in glass matrix“. Laser & Photonics Reviews 7, Nr. 1 (Januar 2013): L1—L5. http://dx.doi.org/10.1002/lpor.201200075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

I.Pokutnyi, Sergey, und Wlodzimierz Salejda. „Excitonic quasimolecules in nanosystems containing quantum dots“. JOURNAL OF ADVANCES IN CHEMISTRY 12, Nr. 2 (16.12.2016): 4018–22. http://dx.doi.org/10.24297/jac.v12i2.2158.

Der volle Inhalt der Quelle
Annotation:
The possibility of occurrence of the excitonic quasimolecule formed of spatially separated electrons and holes in a nanosystem that consists of CuO quantum dots synthesized in a silicate glass matrix. It is shown that the major contribution to the excitonic quasimolecule binding energy is made by the energy of the exchange interaction of electrons with holes and this contribution is much more substantial than the contribution of the energy of Coulomb interaction between the electrons and holes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zenkevich, E., A. Stupak und C. von Borczyskowski. „Temperature Dependence of Photoluminescence for Spin-Coated Semiconductor Quantum Dots and Quantum Dot-Dye Nanoassemblies on Quartz Substrate“. International Journal of Nanoscience 18, Nr. 03n04 (26.03.2019): 1940005. http://dx.doi.org/10.1142/s0219581x19400052.

Der volle Inhalt der Quelle
Annotation:
The attachment of pyridyl substituted porphyrin molecule to the surface of CdSe/ZnS quantum dots in solutions is realized in the competition with capping ligand TOPO molecules resulting in the specific change of photoluminescence for the quantum dots across the temperature range of 77–290[Formula: see text]K. We have shown that fixation of alone quantum dots or quantum dot-porphyrin nanoassemblies on quartz substrate changes significantly temperature dependence of photoluminescence. In contrast to the samples in a glass-forming solution no phase transition of the TOPO capping layer was observed upon removal of the capping layer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

MASUMOTO, YASUAKI. „PERSISTENT SPECTRAL HOLE-BURNING IN SEMICONDUCTOR QUANTUM DOTS“. Surface Review and Letters 03, Nr. 01 (Februar 1996): 143–50. http://dx.doi.org/10.1142/s0218625x96000292.

Der volle Inhalt der Quelle
Annotation:
The persistent spectral hole-burning (PSHB) phenomenon was observed in semiconductor quantum dots, CdSe , CuCl , and CuBr , embedded in glass and crystal. In inhomogeneously broadened exciton absorption spectra of these dots, the narrow bleaching hole and its associated structure are made by the narrowband laser excitation and are conserved for more than several hours at 2 K after the laser irradiation. The observation of the PSHB phenomenon in these four kinds of samples shows the generality of the phenomenon in semiconductor quantum dots and requires the existence of more than one ground-state configurations of the total system consisting of quantum dots and surrounding matrix. It means that not only the size distribution but also these ground-state configurations give inhomoge-neous broadening to semiconductor quantum dots. Thermally annealing and light-induced hole-filling phenomena were observed. Hole-burning and hole-filling mechanisms are discussed. Quantum dots consisting of 103–104 atoms behave like molecules or ions in matrix to give the PSHB phenomenon.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Jeong, Sanghwa, Hong Nam Nguyen, Sekyu Hwang, Beomsoo Kim, Jong Heo und Sungjee Kim. „Preparation of photostable near-infrared luminescent glass with quantum dot-layered double hydroxide composites“. Journal of Materials Chemistry C 4, Nr. 37 (2016): 8624–27. http://dx.doi.org/10.1039/c6tc03142k.

Der volle Inhalt der Quelle
Annotation:
A nanocomposite from near-infrared emitting PbS/CdS core/shell quantum dots and a layered double hydroxide nanoclay was incorporated into an arsenic sulfide glass to represent a highly bright and photostable glass matrix.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Chen, Daqin, Yue Liu, Changbin Yang, Jiasong Zhong, Su Zhou, Jiangkun Chen und Hai Huang. „Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping“. Nanoscale 11, Nr. 37 (2019): 17216–21. http://dx.doi.org/10.1039/c9nr07307h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Kadim, Akeel M. „Fabrication of Quantum Dots Light Emitting Device by Using CdTe Quantum Dots and Organic Polymer“. Journal of Nano Research 50 (November 2017): 48–56. http://dx.doi.org/10.4028/www.scientific.net/jnanor.50.48.

Der volle Inhalt der Quelle
Annotation:
Cadmium telluride CdTe QDs was prepared by chemical reaction and used to fabricate electroluminescence quantum dot hybrid junction device. QD-LED was fabricated using TPD: PMMA/CdTe/Alq3 device which synthesized by phase segregation method. The hybrid white light emitting devices consists, of three-layers deposited successively on the ITO glass substrate; the first layer was of Tetra-Phenyl Diaminobiphenyl (TPD) polymer mixed with polymethyl methacrylate (PMMA) polymers, while the second layer was 0.5wt% of the (CdTe) QDs for hybrid device, whereas the third layer was Tris (8-hydroxyquinoline) aluminium (Alq3). The optical properties of CdTe QDs were considered by UV-Vis. and photoluminescence (PL) spectrometer. The results show that the prepared QDs were nanocrystalline with defects formation. The Eg calculated from PL were 2.25 eV for Cadmium telluride CdTe QDs was prepared by chemical reaction and used to fabricate electroluminescence quantum dot hybrid junction device. QD-LED was fabricated using TPD: PMMA/CdTe/Alq3device which synthesized by phase segregation method. The hybrid white light emitting devices consists, of three-layers deposited successively on the ITO glass substrate; the first layer was of Tetra-Phenyl Diaminobiphenyl (TPD) polymer mixed with polymethyl methacrylate (PMMA) polymers, while the second layer was 0.5wt% of the (CdTe) QDs for hybrid device, whereas the third layer was Tris (8-hydroxyquinoline) aluminium (Alq3). The optical properties of CdTe QDs were measuredby UV-Vis. and photoluminescence (PL) spectrometer. The results show that the prepared QDs were nanocrystalline with defects formation. The Eg calculated from PL were 2.25 eV for CdTe QDs. The generated white light properties with acceptable efficiency using confinement effect that makes the energy gap larger, thus the direction of the light sites are toward the center of white light color. The organic light emitting device (OLED) wasconsidered by room temperature PL and electroluminescence (EL). Current-voltage (I–V) characteristics indicate that the output current is good compared to the few voltage (6 V) used which gives good results to get a generation of white light. The electroluminescence (EL) spectrum of hybrid deviceshows a wide emission band covering the range from 350 - 700 nm. The emissions causing this white luminescence were identified depending on the chromaticity coordinates (CIE 1931) was found (x=0.32, y=0.33). The correlated color temperature (CCT) was found to be about 5886 K. Fabrication of EL-devices from semiconductors material (CdTe QDs) between two layers organic polymer (TPD) and organic molecules (Alq3) were effective in white light generation. The recombination processes and I-V characteristics gives rises to the output current is good compared to the few voltages used which gives good results to become a generation of light.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Silva Filho, José Maria C. da, Victor A. Ermakov, Luiz G. Bonato, Ana F. Nogueira und Francisco C. Marques. „Self-Organized Lead(II) Sulfide Quantum Dots Superlattice“. MRS Advances 2, Nr. 15 (2017): 841–46. http://dx.doi.org/10.1557/adv.2017.246.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTWe show that superlattice (SL) of PbS quantum dots (QD) can be easily prepared by drop casting of colloidal QD solution onto glass substrate and the ordering level can be controlled by the substrate temperature. A QD solution was dropped on glass and dried at 25, 40, 70 and 100°C resulting in formation of different SL structures. X-ray diffractograms (XRD) of deposited films show a set of sharp and intense peaks that are higher order satellites of a unique peak at 1.8 degrees (two theta), which corresponds, using the Bragg’s Law, to an interplanar spacing of 5.3 nm. The mean particles diameter, calculated through the broadening of the (111) peak of PbS using the Scherrer’s formula, were in agreement with the interplanar spacing. Transmission electron microscopy (TEM) measurements were also used to study the SL structure, which showed mainly a face centered cubic (FCC) arrangement of the QD. The photoluminescence (PL) spectrum of QD in the SL showed a shift toward lower energy compared to one in solution. It can be attributed to the fluorescence resonant energy transfer (FRET) between neighbors QD´s. Moreover, we observed greater redshift of PL peak for film with lower drying temperature, suggesting that it has a more organized structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Samartsev, Vitaly, Tatiana Mitrofanova und Alexander Saiko. „Incoherent exciton echo on the CdSe/CdS/ZnS semiconductor quantum dots“. EPJ Web of Conferences 220 (2019): 03023. http://dx.doi.org/10.1051/epjconf/201922003023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Ando, Masanori, Chie Hosokawa, Ping Yang und Norio Murase. „Electroluminescence of Hybrid Self-Organised Fibres Incorporating CdTe Quantum Dots“. Australian Journal of Chemistry 65, Nr. 9 (2012): 1257. http://dx.doi.org/10.1071/ch12127.

Der volle Inhalt der Quelle
Annotation:
We demonstrated electroluminescence from hybrid 1D glass fibres incorporating CdTe quantum dots with a thin SiO2 overlayer which contains CdS-like clusters. The self-organised fibres, prepared by refluxing precursor nanowires, exhibited red electroluminescence on Au interdigitated array electrodes at room temperature. Although fluctuation with time was observed in the electroluminescence, relatively low threshold electric field (2.6 × 106 V m–1) suggests that the CdTe quantum dots-based hybrid fibres are expected to be applied to low voltage driven electroluminescent devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Du, Ying, Lu Deng und Danping Chen. „Ag Nanocluster-Enhanced Scintillation Properties of Borophosphate Glasses Doped with CsPbBr3 Quantum Dots“. Materials 15, Nr. 15 (26.07.2022): 5187. http://dx.doi.org/10.3390/ma15155187.

Der volle Inhalt der Quelle
Annotation:
A novel and effective method to improve scintillation properties of glass-ceramics, such as intensity enhancement and decay-time shortening, is reported in this work. Compared with crystal scintillators, glass scintillators always have the problems of low efficiency and long decay; how to solve them has always been a scientific puzzle in the field of scintillation glass-ceramics. The plasma enhancement effect can be predicted to solve the above problems. Ag+ ions were diffused into glasses by ion exchange, and then Ag nanoparticles and CsPbBr3 quantum dots were formed by heat treatment. The structure of the CsPbBr3 perovskite consists of a series of shared corner PbBr6 octahedra with Cs ions occupying the cuboctahedral cavities. By using Ag and the plasma resonance effect, the photoluminescence intensity of CsPbBr3 quantum dot glasses was enhanced by 3 times, its radioluminescence intensity increased by 6.25 times, and its decay time was reduced by a factor of more than one. Moreover, the mechanism of photoluminescence and radioluminescence enhanced by Ag and plasma was discussed based on the experimental results and finite-difference time-domain method. We concluded that the increase in radioluminescence intensity was related to plasma enhancements and the energy exchange between Ag nanoclusters and CsPbBr3 quantum dots. Doping Ag is a valid means to improve the scintillation luminescence of CsPbBr3 quantum dot glasses, which can be applied in the field of scintillation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Koç, Kenan, Fatma Z. Tepehan und Galip G. Tepehan. „Preparation and Characterization of Self-Assembled Thin Film of MPS-Capped ZnS Quantum Dots for Optical Applications“. Journal of Nanomaterials 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/571315.

Der volle Inhalt der Quelle
Annotation:
For this study, we prepared colloidal ZnS quantum dots using 3-mercaptopropyltrimethoxysilane (MPS) as the capping agent. Colloidal ZnS quantum dots were directly deposited on glass substrates by a spin coating process. Therefore, self-assembled films made of ZnS quantum dots in a SiO2network were obtained using only one production step. The films were heat-treated at 100°, 125°, 150°, 175° and 200°C in an N2atmosphere. The results showed that the dimension of quantum dots changed from 2.8 nm to 3.2 nm by heat treatment. The refractive index, extinction coefficient, thickness, and dielectric coefficient values of the films were calculated. The present study showed that size and the refractive indices of films can be controlled by the heat treatment. Therefore, such films can be a good candidate in optical filter applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Duan, Yongmin, Panpan Li, Yang Lu, Shiqing Xu und Junjie Zhang. „Origin of bimodal luminescence in Cs4PbBr6 quantum dots glass ceramic“. Ceramics International 47, Nr. 10 (Mai 2021): 13381–90. http://dx.doi.org/10.1016/j.ceramint.2021.01.195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Krasovskii, V. I., und S. I. Rasmagin. „Induced Birefringence in CdSe Quantum Dots in Phosphate Glass Matrix“. Optics and Spectroscopy 129, Nr. 1 (Januar 2021): 102–9. http://dx.doi.org/10.1134/s0030400x21010112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Zhang, Xizhen, Mengqi Lin, Lizhu Guo, Yuhang Zhang, Chuanhui Cheng, Jiashi Sun, Yi Cheng et al. „Long-wavelength pass filter using green CsPbBr3 quantum dots glass“. Optics & Laser Technology 138 (Juni 2021): 106857. http://dx.doi.org/10.1016/j.optlastec.2020.106857.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Allahverdi, Ç., und M. H. Yukselici. „Time-dependent volume fraction of CdTe quantum dots in glass“. Physica Scripta 78, Nr. 1 (Juli 2008): 015702. http://dx.doi.org/10.1088/0031-8949/78/01/015702.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Faraci, G., A. R. Pennisi und A. Balerna. „SnO $ \mathsf {_2}$ quantum dots confined in a glass matrix“. European Physical Journal B - Condensed Matter 30, Nr. 3 (01.12.2002): 393–98. http://dx.doi.org/10.1140/epjb/e2002-00394-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Lipovskii, A., E. Kolobkova, V. Petrikov, I. Kang, A. Olkhovets, T. Krauss, M. Thomas et al. „Synthesis and characterization of PbSe quantum dots in phosphate glass“. Applied Physics Letters 71, Nr. 23 (08.12.1997): 3406–8. http://dx.doi.org/10.1063/1.120349.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Silva, R. S., P. C. Morais, A. M. Alcalde, Fanyao Qu, A. F. G. Monte und N. O. Dantas. „Optical properties of PbSe quantum dots embedded in oxide glass“. Journal of Non-Crystalline Solids 352, Nr. 32-35 (September 2006): 3522–24. http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Auxier, Jason M., Michael M. Morrell, Brian R. West, Seppo Honkanen, Axel Schülzgen, Nasser Peyghambarian, Sabyasachi Sen und Nicholas F. Borrelli. „Ion-exchanged waveguides in glass doped with PbS quantum dots“. Applied Physics Letters 85, Nr. 25 (20.12.2004): 6098–100. http://dx.doi.org/10.1063/1.1839284.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Demourgues, A., G. N. Greaves, R. Bilsborrow, G. Baker, A. Sery und B. Speit. „XAFS study of CdSe quantum dots in a silicate glass“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 97, Nr. 1-4 (Mai 1995): 166–68. http://dx.doi.org/10.1016/0168-583x(94)00712-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Chang, Jieun, Chao Liu und Jong Heo. „Optical properties of PbSe quantum dots doped in borosilicate glass“. Journal of Non-Crystalline Solids 355, Nr. 37-42 (Oktober 2009): 1897–99. http://dx.doi.org/10.1016/j.jnoncrysol.2008.12.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Xue, Junpeng, Xiangfu Wang, Jung Hyun Jeong und Xiaohong Yan. „Fabrication, photoluminescence and applications of quantum dots embedded glass ceramics“. Chemical Engineering Journal 383 (März 2020): 123082. http://dx.doi.org/10.1016/j.cej.2019.123082.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ahmadpour, Hamidreza, und Seyed Mohamadreza Milani Hosseini. „A molecularly imprinted modified CdSeS/ZnS core–shell quantum dot embedded glass slide for highly selective and sensitive solid phase optosensing of trace amounts of lidocaine in biological samples“. Analytical Methods 11, Nr. 6 (2019): 851–59. http://dx.doi.org/10.1039/c8ay02482k.

Der volle Inhalt der Quelle
Annotation:
An optosensing material based on surface functionalization of a glass slide with quantum dots (QDs) and molecularly imprinted polymer (glass slide@QDs@MIP) with unique optical properties of QDs and selective recognition of MIPs was fabricated for the determination of lidocaine in biological samples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie