Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Quantum material“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Quantum material" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Quantum material"
Dai, Xian Hua, und Hong Li. „A Survey on Additivity Conjecture“. Applied Mechanics and Materials 203 (Oktober 2012): 497–99. http://dx.doi.org/10.4028/www.scientific.net/amm.203.497.
Der volle Inhalt der QuelleJUNG, Suyong, Junho SUH und Yong-Sung KIM. „Quantum Material Metrology based on Nanoscale Quantum Devices“. Physics and High Technology 28, Nr. 11 (30.11.2019): 8–14. http://dx.doi.org/10.3938/phit.28.044.
Der volle Inhalt der QuelleYu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng und Yu Yang. „Topological quantum material simulated with superconducting quantum circuits“. Acta Physica Sinica 67, Nr. 22 (2018): 220302. http://dx.doi.org/10.7498/aps.67.20181857.
Der volle Inhalt der QuelleCastelletto, Stefania, Faraz A. Inam, Shin-ichiro Sato und Alberto Boretti. „Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface“. Beilstein Journal of Nanotechnology 11 (08.05.2020): 740–69. http://dx.doi.org/10.3762/bjnano.11.61.
Der volle Inhalt der Quellede Graaf, S. E., S. Un, A. G. Shard und T. Lindström. „Chemical and structural identification of material defects in superconducting quantum circuits“. Materials for Quantum Technology 2, Nr. 3 (19.07.2022): 032001. http://dx.doi.org/10.1088/2633-4356/ac78ba.
Der volle Inhalt der QuelleZhang, Jie-Yin, Fei Gao und Jian-Jun Zhang. „Research progress of silicon and germanium quantum computing materials“. Acta Physica Sinica 70, Nr. 21 (2021): 217802. http://dx.doi.org/10.7498/aps.70.20211492.
Der volle Inhalt der QuelleYang, HeeBong, und Na Young Kim. „Material-Inherent Noise Sources in Quantum Information Architecture“. Materials 16, Nr. 7 (23.03.2023): 2561. http://dx.doi.org/10.3390/ma16072561.
Der volle Inhalt der QuellePan, Xing-Chen, Xuefeng Wang, Fengqi Song und Baigeng Wang. „The study on quantum material WTe2“. Advances in Physics: X 3, Nr. 1 (Januar 2018): 1468279. http://dx.doi.org/10.1080/23746149.2018.1468279.
Der volle Inhalt der QuellePatrick, Chris. „Lasers advance 2D quantum material manufacturing“. Scilight 2019, Nr. 25 (21.06.2019): 250014. http://dx.doi.org/10.1063/1.5115490.
Der volle Inhalt der QuelleBogdanov, S., M. Y. Shalaginov, A. Boltasseva und V. M. Shalaev. „Material platforms for integrated quantum photonics“. Optical Materials Express 7, Nr. 1 (08.12.2016): 111. http://dx.doi.org/10.1364/ome.7.000111.
Der volle Inhalt der QuelleDissertationen zum Thema "Quantum material"
Zietal, Robert J. „Quantum elecrodynamics near material boundaries“. Thesis, University of Sussex, 2010. http://sro.sussex.ac.uk/id/eprint/2520/.
Der volle Inhalt der QuelleMatloob, Mohammad Reza. „Theory of electromagnetic field quantization in material media“. Thesis, University of Essex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282572.
Der volle Inhalt der QuelleWang, Qi. „Study of InGaN based quantum dot material and devices“. Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522509.
Der volle Inhalt der QuelleWong, Huei Ching. „Investigation of quantum dot based material systems for metro-access network“. Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437270.
Der volle Inhalt der QuelleBlay, Claire. „Characterisation of intermixed quantum well material by measurements of spontaneous emission“. Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323571.
Der volle Inhalt der QuelleBRUNI, FRANCESCO. „NOVEL MATERIAL DESIGN AND MANIPULATION STRATEGIES FOR ADVANCED OPTOELECTRONIC APPLICATIONS“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/151660.
Der volle Inhalt der QuelleMy PhD has been focused on organic semiconductors for photovoltaics and photodetecting applications. Initially, I worked on the control of the morphology in binary blends of small organic molecules and fullerenes using the so called latent pigment approach. Subsequently, I investigated the charge accumulation and polarization effect occurring at the interface between water and a polymeric semiconductor used as optical component in retinal prosthesis by means of inorganic colloidal nanocrystals featuring a ratiometric sensing ability for electron withdrawing agents. As a last part of the work, I focalized on the applications of these nanocrystals as ratiometric sensors for intracellular pH probing and pressure optical monitoring. Specifically, during the first part of my PhD, I worked in the field of organic photovoltaics on the morphology engineering of the active layer of small molecules bulk-heterojunction solar cells. I demonstrated a new strategy to fine tune the phase-segregation in thin films of a suitably functionalized electron donor blended with fullerene derivatives by introducing in the system a post-deposition thermally activated network of hydrogen bonds that leads to improved stability and high crystallinity. Moreover, this process increases the carrier mobility of the donor species and allows for controlling the size of segregated domains resulting in an improved efficiency of the photovoltaic devices. This work revealed the great potential of the latent hydrogen bonding strategy that I subsequently exploited to fabricate nanometric semiconductive features on the film surface by using a very simple maskless lithographic technique. To do so, I focalized a UV laser into a confocal microscope and used the objective as a “brush” to thermically induce a localized hydrogen bonding driven crystallization with diffraction limited resolution. My work on organic semiconductors continued with a study on the surface polarization driven charge separation at the P3HT/water interfaces in optoelectronic devices for biologic applications. In this work, I probed the local accumulation of positive charges on the P3HT surface in aqueous environment by exploiting the ratiometric sensing capabilities of particular engineered core/shell heterostuctures called dot-in-bulk nanocrystals (DiB-NCs). These structures feature two-colour emission due to the simultaneous recombination of their core and shell localized excitons. Importantly, the two emissions are differently affected by the external chemical environment, making DiB-NCs ideal optical ratiometric sensors. In the second part of my PhD, I, therefore, focalized on the single particle sensing application of DiB-NCs. Specifically, I used them to ratiometrically probe intracellular pH in living cells. With this aim, I studied their ratiometric response in solution by titration with an acid and a base. Subsequently, I internalized them into living human embryonic kidney (HEK) cells and monitored an externally induced alteration of the intracellular pH. Importantly, viability test on DiB-NCs revealed no cytotoxicity demonstrating their great potential as ratiometric pH probes for biologic application. Finally, I used DiB-NCs as a proof-of-concept single particle ratiometric pressure sensitive paint (r-PSP). In this application, the emission ratio between the core and the shell emission is used to determine the oxygen partial pressure and therefore the atmospheric pressure of the NC environment.
Rasin, Ahmed Tasnim. „High efficiency quantum dot-sensitised solar cells by material science and device architecture“. Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/78822/1/Ahmed%20Tasnim_Rasin_Thesis.pdf.
Der volle Inhalt der QuellePillar-Little, Timothy J. Jr. „CARBON QUANTUM DOTS: BRIDGING THE GAP BETWEEN CHEMICAL STRUCTURE AND MATERIAL PROPERTIES“. UKnowledge, 2018. https://uknowledge.uky.edu/chemistry_etds/94.
Der volle Inhalt der QuelleHatami, Soheil, Christian Würth, Martin Kaiser, Susanne Leubner, Stefanie Gabriel, Lydia Bahrig, Vladimir Lesnyak et al. „Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd₁₋ₓHgₓTe and PbS quantum dots: method- and material-inherent challenges“. Royal Society of Chemistry, 2015. https://tud.qucosa.de/id/qucosa%3A36307.
Der volle Inhalt der QuelleStavrinou, Paul Nicholas. „A study of InP-based strained layer heterostructures“. Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261711.
Der volle Inhalt der QuelleBücher zum Thema "Quantum material"
Aoki, Yuriko, Yuuichi Orimoto und Akira Imamura. Quantum Chemical Approach for Organic Ferromagnetic Material Design. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49829-4.
Der volle Inhalt der QuelleDipak, Basu, Hrsg. Dictionary of material science and high energy physics. Boca Raton, Fla: CRC Press, 2001.
Den vollen Inhalt der Quelle findenGoswami, Amit. The self-aware universe: How consciousness creates the material world. New York: Jeremy P. Tarcher/Putnam, 1995.
Den vollen Inhalt der Quelle findenG, Ihas G., und Takano Yasumasa, Hrsg. Quantum fluids and solids--1989, Gainesville, FL 1989. New York: American Institute of Physics, 1989.
Den vollen Inhalt der Quelle findenE, Reed Richard, und Goswami Maggie, Hrsg. The self-aware universe: How consciousness creates the material world. New York: Putnam's Sons, 1993.
Den vollen Inhalt der Quelle findenF, Habenicht Bradley, Hrsg. Excitonic and vibrational dynamics in nanotechnology: Quantum dots vs. nanotubes. Singapore: Pan Stanford Pub., 2009.
Den vollen Inhalt der Quelle finden1952-, Jauho Antti-Pekka, Hrsg. Quantum kinetics in transport and optics of semiconductors. Berlin: Springer, 1996.
Den vollen Inhalt der Quelle findenGore, Gordon R. A student's guide to physics 12: A brief summary of core material and the quantum physics option in physics 12 for British Columbia. [Mission, B.C.]: G.R. Gore, 1991.
Den vollen Inhalt der Quelle findenA, Goldman J., Brennan K. F und United States. National Aeronautics and Space Administration., Hrsg. Theoretical and material studies of thin-film electroluminescent devices: Sixth six-monthly report for the period 1 November 1987 - 30 April 1988. Atlanta, GA: Georgia Institute of Technology ; [Washington, DC, 1988.
Den vollen Inhalt der Quelle findenF, Brennan K., und United States. National Aeronautics and Space Administration., Hrsg. Theoretical and material studies of thin-film electroluminescent devices: Second six monthly report for the period 1 October 1985 - 31 March 1986. [Washington, DC: National Aeronautics and Space Administration, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Quantum material"
Hermann, Jan. „Introduction to Material Modeling“. In Machine Learning Meets Quantum Physics, 7–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40245-7_2.
Der volle Inhalt der QuelleFernández, Roberto, Jürg Fröhlich und Alan D. Sokal. „Background material“. In Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory, 275–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02866-7_13.
Der volle Inhalt der QuelleBrandt, Siegmund, Hans Dieter Dahmen und Tilo Stroh. „Additional Material and Hints for the Solution of Exercises“. In Interactive Quantum Mechanics, 269–314. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7424-2_12.
Der volle Inhalt der QuelleBrandt, Siegmund, Hans Dieter Dahmen und Tilo Stroh. „Additional Material and Hints for the Solution of Exercises“. In Interactive Quantum Mechanics, 206–47. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21653-9_10.
Der volle Inhalt der QuelleSon, Dong-Ick, und Won-Kook Choi. „New Nanoscale Material: Graphene Quantum Dots“. In Nanomaterials, Polymers, and Devices, 141–94. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118867204.ch6.
Der volle Inhalt der QuelleHorak, R., J. Bjer, C. Sibilia und M. Bertolotti. „Diffraction Free Field Propagation in Nonlinear Material“. In Coherence and Quantum Optics VII, 685–86. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_213.
Der volle Inhalt der QuelleAmbjørn, Jan. „Preliminary Material Part 1: The Path Integral“. In Elementary Introduction to Quantum Geometry, 1–14. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003320562-1.
Der volle Inhalt der QuelleIto, Ryoichi, Chang-qing Xu und Takashi Kondo. „(C10H21NH3)2PbI4: A natural quantum-well material“. In Solid State Materials, 157–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09935-3_9.
Der volle Inhalt der QuelleBarbeau, Michel. „Secure Quantum Data Communications Using Classical Keying Material“. In Quantum Technology and Optimization Problems, 183–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14082-3_16.
Der volle Inhalt der QuelleRay, Samit K., Subhrajit Mukherjee, Tamal Dey, Subhajit Jana und Elad Koren. „Two-Dimensional Material-Based Quantum Dots for Wavelength-Selective, Tunable, and Broadband Photodetector Devices“. In Quantum Dot Photodetectors, 249–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74270-6_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Quantum material"
Dutta, A., A. P. M. Place, K. D. Crowley, X. H. Le, Y. Gang, L. V. H. Rodgers, T. Madhavan et al. „Study of material loss channels in tantalum microwave superconducting resonators“. In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qtu2a.25.
Der volle Inhalt der QuelleTAKADA, TOSHIKAZU. „WHAT QUANTUM CHEMISTS LEARN FROM BIO MATERIAL SIMULATIONS?“ In Quantum Bio-Informatics — From Quantum Information to Bio-Informatics. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793171_0031.
Der volle Inhalt der QuelleLisnichenko, Marina, und Stanislav Protasov. „BIO MATERIAL MODELING QUANTUM CIRCUIT COMPRESSION“. In Mathematical modeling in materials science of electronic component. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m3058.mmmsec-2022/15-17.
Der volle Inhalt der QuelleMichael, Stephan, Weng W. Chow und Hans Christian Schneider. „Quantum dots as active material for quantum cascade lasers: comparison to quantum wells“. In SPIE OPTO, herausgegeben von Alexey A. Belyanin und Peter M. Smowton. SPIE, 2016. http://dx.doi.org/10.1117/12.2213324.
Der volle Inhalt der QuelleBeckert, Adrian, Joe Bailey, Guy Matmon, Simon Gerber, Hans Sigg und Gabriel Aeppli. „LiY1-xHoxF4: a candidate material for the implementation of solid state qubits (Conference Presentation)“. In Quantum Technologies, herausgegeben von Andrew J. Shields, Jürgen Stuhler und Miles J. Padgett. SPIE, 2018. http://dx.doi.org/10.1117/12.2307317.
Der volle Inhalt der QuelleYoshie, Tomoyuki, Marko Loncar, Koichi Okamoto, Yueming Qiu, Oleg B. Shchekin, Hao Chen, Dennis G. Deppe und Axel Scherer. „Photonic crystal nanocavities with quantum well or quantum dot active material“. In Integrated Optoelectronic Devices 2004, herausgegeben von Ali Adibi, Axel Scherer und Shawn-Yu Lin. SPIE, 2004. http://dx.doi.org/10.1117/12.525869.
Der volle Inhalt der QuelleKay, Bruce D., T. D. Raymond und Michael E. Coltrin. „Quantum-Resolved Gas-Surface Scattering: NH3 from Au (111)“. In Lasers in Material Diagnostics. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/lmd.1987.we2.
Der volle Inhalt der QuelleCarignan, L., D. Menard und C. Caloz. „Ferromagnetic nanowire material electromagnetic and quantum devices“. In TELSIKS 2011 - 2011 10th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services. IEEE, 2011. http://dx.doi.org/10.1109/telsks.2011.6111771.
Der volle Inhalt der QuelleSchaevitz, Rebecca K., Jonathan E. Roth, Onur Fidaner und David A. B. Miller. „Material properties in SiGe/Ge quantum wells“. In Frontiers in Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/fio.2007.fmc3.
Der volle Inhalt der QuelleAubergier, Nathan, Patricia Loren, Julien Guise, Franziska Braho, Pierre Fehlen, Melissa Najem, Fernando Gonzalez-Posada et al. „Quantum plasmonics and hyperbolic material for biosensing“. In Quantum Sensing and Nano Electronics and Photonics XVIII, herausgegeben von Manijeh Razeghi, Giti A. Khodaparast und Miriam S. Vitiello. SPIE, 2022. http://dx.doi.org/10.1117/12.2615652.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Quantum material"
Pettes, Michael Thompson. Deterministic Quantum Emission in an Epitaxial 2D Material. Office of Scientific and Technical Information (OSTI), Juli 2020. http://dx.doi.org/10.2172/1529528.
Der volle Inhalt der QuelleXiao, John. Spin orbit torque in ferromagnet/topological-quantum-material heterostructures. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1886831.
Der volle Inhalt der QuellePanfil, Yossef E., Meirav Oded, Nir Waiskopf und Uri Banin. Material Challenges for Colloidal Quantum Nanostructures in Next Generation Displays. AsiaChem Magazine, November 2020. http://dx.doi.org/10.51167/acm00008.
Der volle Inhalt der QuelleMitchell, B. G. Quantum Yields of Soluble and Particulate Material in the Ocean. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada375906.
Der volle Inhalt der QuelleAdams, George F., und Cary F. Chabalowski. Quantum Chemical Studies of Candidate High Energy Density Material Compounds. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada232393.
Der volle Inhalt der QuelleDominguez, Francisco Javier, Predrag Krstic, Jean Paul Allain, Felipe Bedoya und Bruce Koel. Quantum-Classical Science for the Plasma-Material Interface in NSTXU - Final Technical Report. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1567016.
Der volle Inhalt der QuelleMounce, Andrew, Joe Thompson, Eric Bauer, A. Reyes und P. Kuhns. Novel Magnetic States in the Heavy-Fermion Quantum-Critical Material CeRhIn5 at High Magnetic Fields Studied by NMR. Office of Scientific and Technical Information (OSTI), Dezember 2014. http://dx.doi.org/10.2172/1165175.
Der volle Inhalt der QuelleDisterhaupt, Jennifer, Michael James und Marc Klasky. (U) Segmented Scintillator Pitch, Thickness, and Septa Material Effects on the Swank Factor, Quantum Efficiency, and DQE(0) for High-Energy X-Ray Radiography. Office of Scientific and Technical Information (OSTI), März 2021. http://dx.doi.org/10.2172/1770096.
Der volle Inhalt der QuelleNenoff, Tina M., Tina M. Nenoff, Tina M. Nenoff, Tina M. Nenoff, Stanley Shihyao Chou, Stanley Shihyao Chou, Peter Dickens et al. Topological Quantum Materials for Quantum Computation. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1569786.
Der volle Inhalt der QuelleMisra, Shashank, Daniel Robert Ward, Andrew David Baczewski, Quinn Campbell, Scott William Schmucker, Andrew M. Mounce, Lisa A. Tracy, Tzu-Ming Lu, Michael Thomas Marshall und DeAnna Marie Campbell. Designer quantum materials. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1592939.
Der volle Inhalt der Quelle