Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Quantum theory.

Zeitschriftenartikel zum Thema „Quantum theory“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Quantum theory" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Lee, Hyun Seok. "Cultural Studies and Quantum Mechanics." Criticism and Theory Society of Korea 28, no. 2 (June 30, 2023): 253–95. http://dx.doi.org/10.19116/theory.2023.28.2.253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bethe, Hans A. "Quantum theory." Reviews of Modern Physics 71, no. 2 (March 1, 1999): S1—S5. http://dx.doi.org/10.1103/revmodphys.71.s1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wilson, Robin. "Quantum theory." Mathematical Intelligencer 41, no. 4 (July 15, 2019): 76. http://dx.doi.org/10.1007/s00283-019-09916-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yukalov, V. I., and D. Sornette. "Quantum decision theory as quantum theory of measurement." Physics Letters A 372, no. 46 (November 2008): 6867–71. http://dx.doi.org/10.1016/j.physleta.2008.09.053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yukalov, V. I., and D. Sornette. "Quantum theory of measurements as quantum decision theory." Journal of Physics: Conference Series 594 (March 18, 2015): 012048. http://dx.doi.org/10.1088/1742-6596/594/1/012048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

YF, Chang. "Restructure of Quantum Mechanics by Duality, the Extensive Quantum Theory and Applications." Physical Science & Biophysics Journal 8, no. 1 (February 2, 2024): 1–9. http://dx.doi.org/10.23880/psbj-16000265.

Der volle Inhalt der Quelle
Annotation:
Reconstructing quantum mechanics has been an exploratory direction for physicists. Based on logical structure and basic principles of quantum mechanics, we propose a new method on reconstruction quantum mechanics completely by the waveparticle duality. This is divided into two steps: First, from wave form and duality we obtain the extensive quantum theory, which has the same quantum formulations only with different quantum constants H; then microscopic phenomena determine H=h. Further, we derive the corresponding commutation relation, the uncertainty principle and Heisenberg equation, etc. Then we research potential and interactions in special relativity and general relativity. Finally, various applications and developments, and some basic questions are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Khalesi, Elham. "Quantum Theory Proof Show by MATLAB Software." Journal of Applied Material Science & Engineering Research 7, no. 2 (July 20, 2023): 107–8. https://doi.org/10.33140/jamser.07.02.04.

Der volle Inhalt der Quelle
Annotation:
This paper is based on Numeric Estimation that for unsymmetrical figures has benefits. Also, this project by Finite Difference Method and Matlab Programming and knowing potential in boundary condition , field in Microwave Devices or parameters in Transfer Electronics Line obtain.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lan, B. L., and S.-N. Liang. "Is Bohm's quantum theory equivalent to standard quantum theory?" Journal of Physics: Conference Series 128 (August 1, 2008): 012017. http://dx.doi.org/10.1088/1742-6596/128/1/012017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Arrighi, Pablo, Amélia Durbec, and Matt Wilson. "Quantum networks theory." Quantum 8 (October 23, 2024): 1508. http://dx.doi.org/10.22331/q-2024-10-23-1508.

Der volle Inhalt der Quelle
Annotation:
The formalism of quantum theory over discrete systems is extended in two significant ways. First, quantum evolutions are generalized to act over entire network configurations, so that nodes may find themselves in a quantum superposition of being connected or not, and be allowed to merge, split and reconnect coherently in a superposition. Second, tensors and traceouts are generalized, so that systems can be partitioned according to almost arbitrary logical predicates in a robust manner. The hereby presented mathematical framework is anchored on solid grounds through numerous lemmas. Indeed, one might have feared that the familiar interrelations between the notions of unitarity, complete positivity, trace-preservation, non-signalling causality, locality and localizability that are standard in quantum theory be jeopardized as the neighbourhood and partitioning between systems become both quantum, dynamical, and logical. Such interrelations in fact carry through, albeit two new notions become instrumental: consistency and comprehension.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Svozil, Karl. "Quantum Algorithmic Information Theory." JUCS - Journal of Universal Computer Science 2, no. (5) (May 28, 1996): 311–46. https://doi.org/10.3217/jucs-002-05-0311.

Der volle Inhalt der Quelle
Annotation:
The agenda of quantum algorithmic information theory, ordered `top-down, is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capable of arbitrary U(2) transformations. Basic to all these considerations is quantum theory, which is most conveniently expressible in Hilbert space. 1.) C. Calude (ed.). The Finite, the Unbounded and the Infinite, Proceedings of the Summer School "Chaitin Complexity and Applications", Mangalia, Romania, 27 June - 6 July, 1995.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Hofmann, Ralf. "Quantum Field Theory." Universe 10, no. 1 (December 28, 2023): 14. http://dx.doi.org/10.3390/universe10010014.

Der volle Inhalt der Quelle
Annotation:
This Special Issue on quantum field theory presents work covering a wide and topical range of subjects mainly within the area of interacting 4D quantum field theories subject to certain backgrounds [...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Green, H. S. "Quantum Theory of Gravitation." Australian Journal of Physics 51, no. 3 (1998): 459. http://dx.doi.org/10.1071/p97084.

Der volle Inhalt der Quelle
Annotation:
It is possible to construct the non-euclidean geometry of space-time from the information carried by neutral particles. Points are identified with the quantal events in which photons or neutrinos are created and annihilated, and represented by the relativistic density matrices of particles immediately after creation or before annihilation. From these, matrices representing subspaces in any number of dimensions are constructed, and the metric and curvature tensors are derived by an elementary algebraic method; these are similar in all respects to those of Riemannian geometry. The algebraic method is extended to obtain solutions of Einstein’s gravitational field equations for empty space, with a cosmological term. General relativity and quantum theory are unified by the quantal embedding of non-euclidean space-time, and the derivation of a generalisation, consistent with Einstein"s equations, of the special relativistic wave equations of particles of any spin within representations of SO(3) ⊗ SO(4; 2). There are some novel results concerning the dependence of the scale of space-time on properties of the particles by means of which it is observed, and the gauge groups associated with gravitation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Hudson, R. L., and L. S. Brown. "Quantum Field Theory." Mathematical Gazette 79, no. 484 (March 1995): 249. http://dx.doi.org/10.2307/3620134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Sorongane, Elie W’ishe. "Quantum Color Theory." Open Journal of Applied Sciences 12, no. 04 (2022): 517–27. http://dx.doi.org/10.4236/ojapps.2022.124036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Wills, S. "Quantum Information Theory." Irish Mathematical Society Bulletin 0082 (2018): 35–37. http://dx.doi.org/10.33232/bims.0082.35.37.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Flynn, Matthew. "Quantum sock theory." Physics World 8, no. 5 (May 1995): 72–76. http://dx.doi.org/10.1088/2058-7058/8/5/39.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Bennett, C. H., and P. W. Shor. "Quantum information theory." IEEE Transactions on Information Theory 44, no. 6 (1998): 2724–42. http://dx.doi.org/10.1109/18.720553.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Wilczek, Frank. "Quantum field theory." Reviews of Modern Physics 71, no. 2 (March 1, 1999): S85—S95. http://dx.doi.org/10.1103/revmodphys.71.s85.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Rudolph, Oliver. "Temporal quantum theory." Physical Review A 59, no. 2 (February 1, 1999): 1045–55. http://dx.doi.org/10.1103/physreva.59.1045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Collins, P. D. B. "Quantum Field Theory." Physics Bulletin 36, no. 9 (September 1985): 391. http://dx.doi.org/10.1088/0031-9112/36/9/028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Rauch, Helmut. "Debating quantum theory." Physics World 17, no. 7 (July 2004): 39–40. http://dx.doi.org/10.1088/2058-7058/17/7/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Mandl, F., G. Shaw, and Stephen Gasiorowicz. "Quantum Field Theory." Physics Today 38, no. 10 (October 1985): 111–12. http://dx.doi.org/10.1063/1.2814741.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Haag, Rudolf. "On quantum theory." International Journal of Quantum Information 17, no. 04 (June 2019): 1950037. http://dx.doi.org/10.1142/s0219749919500370.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Bernstein, Ethan, and Umesh Vazirani. "Quantum Complexity Theory." SIAM Journal on Computing 26, no. 5 (October 1997): 1411–73. http://dx.doi.org/10.1137/s0097539796300921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Omnès, Roland. "Consistent quantum theory." Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34, no. 2 (June 2003): 329–31. http://dx.doi.org/10.1016/s1355-2198(03)00010-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Titani, Satoko, and Haruhiko Kozawa. "Quantum Set Theory." International Journal of Theoretical Physics 42, no. 11 (November 2003): 2575–602. http://dx.doi.org/10.1023/b:ijtp.0000005977.55748.e4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Bacon, Dave. "Populist quantum theory." Nature Physics 4, no. 7 (July 2008): 509–10. http://dx.doi.org/10.1038/nphys1009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Rédei, Miklós, and Stephen Jeffrey Summers. "Quantum probability theory." Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38, no. 2 (June 2007): 390–417. http://dx.doi.org/10.1016/j.shpsb.2006.05.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Godin, T. J., and Roger Haydock. "Quantum circuit theory." Superlattices and Microstructures 2, no. 6 (January 1986): 597–600. http://dx.doi.org/10.1016/0749-6036(86)90122-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Tokuo, Kenji. "Quantum Number Theory." International Journal of Theoretical Physics 43, no. 12 (December 2004): 2461–81. http://dx.doi.org/10.1007/s10773-004-7711-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Babelon, O., and L. Bonora. "Quantum Toda theory." Physics Letters B 253, no. 3-4 (January 1991): 365–72. http://dx.doi.org/10.1016/0370-2693(91)91734-d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Agarwal, N. S. "New Quantum Theory." Indian Journal of Science and Technology 5, no. 11 (November 20, 2012): 1–6. http://dx.doi.org/10.17485/ijst/2012/v5i11.5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zweifel, Paul F., and Bruce Toomire. "Quantum transport theory." Transport Theory and Statistical Physics 27, no. 3-4 (April 1998): 347–59. http://dx.doi.org/10.1080/00411459808205630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Friedberg, R., and P. C. Hohenberg. "Compatible quantum theory." Reports on Progress in Physics 77, no. 9 (August 22, 2014): 092001. http://dx.doi.org/10.1088/0034-4885/77/9/092001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Collins, P. D. B. "Quantum Field Theory." Physics Bulletin 37, no. 7 (July 1986): 304. http://dx.doi.org/10.1088/0031-9112/37/7/030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

McCall, Storrs. "Axiomatic Quantum Theory." Journal of Philosophical Logic 30, no. 5 (October 2001): 465–77. http://dx.doi.org/10.1023/a:1012226116310.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Unger, H. J. "Quantum Field Theory." Zeitschrift für Physikalische Chemie 187, Part_1 (January 1994): 155–56. http://dx.doi.org/10.1524/zpch.1994.187.part_1.155a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Uhlmann, A. "Quantum Field Theory." Zeitschrift für Physikalische Chemie 194, Part_1 (January 1996): 130. http://dx.doi.org/10.1524/zpch.1996.194.part_1.130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Aastrup, Johannes, and Jesper Møller Grimstrup. "Quantum holonomy theory." Fortschritte der Physik 64, no. 10 (September 12, 2016): 783–818. http://dx.doi.org/10.1002/prop.201600073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Schumacher, Benjamin, and Michael D. Westmoreland. "Modal Quantum Theory." Foundations of Physics 42, no. 7 (May 17, 2012): 918–25. http://dx.doi.org/10.1007/s10701-012-9650-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Brown, Lowell S., Michio Kaku, and O. W. Greenberg. "Quantum Field Theory and Quantum Field Theory: A Modern Introduction." Physics Today 47, no. 2 (February 1994): 104–6. http://dx.doi.org/10.1063/1.2808409.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

MacDonald, A. H., and Matthew P. A. Fisher. "Quantum theory of quantum Hall smectics." Physical Review B 61, no. 8 (February 15, 2000): 5724–33. http://dx.doi.org/10.1103/physrevb.61.5724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hiatt, Christopher. "Quantum traces in quantum Teichmüller theory." Algebraic & Geometric Topology 10, no. 3 (June 1, 2010): 1245–83. http://dx.doi.org/10.2140/agt.2010.10.1245.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Doplicher, Sergio. "Quantum Field Theory on Quantum Spacetime." Journal of Physics: Conference Series 53 (November 1, 2006): 793–98. http://dx.doi.org/10.1088/1742-6596/53/1/051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Wiseman, H. M. "Quantum trajectories and quantum measurement theory." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, no. 1 (February 1996): 205–22. http://dx.doi.org/10.1088/1355-5111/8/1/015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

SORKIN, R. D. "Quantum Gravity: Quantum Theory of Gravity." Science 228, no. 4699 (May 3, 1985): 572. http://dx.doi.org/10.1126/science.228.4699.572.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Dey, Indrakshi, Nicola Marchetti, Marcello Caleffi, and Angela Sara Cacciapuoti. "Quantum Game Theory Meets Quantum Networks." IEEE Wireless Communications 31, no. 4 (August 2024): 90–96. http://dx.doi.org/10.1109/mwc.001.2300288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Dong, Chongying, Xiangyu Jiao, and Feng Xu. "Quantum dimensions and quantum Galois theory." Transactions of the American Mathematical Society 365, no. 12 (August 20, 2013): 6441–69. http://dx.doi.org/10.1090/s0002-9947-2013-05863-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

SORKIN, RAFAEL D. "QUANTUM MECHANICS AS QUANTUM MEASURE THEORY." Modern Physics Letters A 09, no. 33 (October 30, 1994): 3119–27. http://dx.doi.org/10.1142/s021773239400294x.

Der volle Inhalt der Quelle
Annotation:
The additivity of classical probabilities is only the first in a hierarchy of possible sum rules, each of which implies its successor. The first and most restrictive sum rule of the hierarchy yields measure theory in the Kolmogorov sense, which is appropriate physically for the description of stochastic processes such as Brownian motion. The next weaker sum rule defines a generalized measure theory which includes quantum mechanics as a special case. The fact that quantum probabilities can be expressed "as the squares of quantum amplitudes" is thus derived in a natural manner, and a series of natural generalizations of the quantum formalism is delineated. Conversely, the mathematical sense in which classical physics is a special case of quantum physics is clarified. The present paper presents these relationships in the context of a "realistic" interpretation of quantum mechanics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ying, Mingsheng. "Quantum computation, quantum theory and AI." Artificial Intelligence 174, no. 2 (February 2010): 162–76. http://dx.doi.org/10.1016/j.artint.2009.11.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie