Dissertationen zum Thema „Redes neurais (Computação)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Redes neurais (Computação)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Ribeiro, João Henrique Ranhel. „Computação por assembleias neurais em redes neurais pulsadas“. Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032012-112119/.
Der volle Inhalt der QuelleOne of the greatest mysteries in science is to comprehend how brains are capable of realizing the extraordinary computational operations they do. Probably, brains are the structures in which matter and energy are organized in the most complex way in the Universe. Central to the brain computation is the concept of neuron. How neurons compute is motive of intensive scientific investigation. A prevailing consensus is that neurons form transient groups (assemblies) in order to represent things, for realizing computational operations, and for executing cognitive processes; although the mechanisms that substantiate such computation by neural assemblies are not yet well understood. In this thesis we propose a form that explains how neural assembly computation may occur. It is shown that two components are fundamentals for neural coalition formation: the temporal relation among neural groups, and the coupling factor among them. In this sense, neural assemblies presuppose spiking neurons; therefore, here we simulate assembly computing using spiking neural networks. In this thesis it is presented basically a functional approach; thus, it presents a theoretical approach concerning the properties, principles, characteristics, and components that allow the computational operations in neural coalitions. It is presented in the thesis that: (i) as neurons form assemblies it is implicit that a kind of stochastic logic function occurs; (ii) assemblies may form groups that feedback each other, creating bistable groups; (iii) bistable groups internally represent the event that created them; (iv) assemblies may branch and dissolve other assemblies, what give rise to complex algorithms. This is an initial investigation about neural assembly computing and there is a lot to be done; however, in this thesis we present the basal concepts for this new approach. There are programs in the appendices that allow the reader to simulate assembly formation, branching, inhibition, reverberation, among other properties and components in our proposal.
Dartora, Gery Antonio. „Redes neurais artificiais“. Florianópolis, SC, 2003. http://repositorio.ufsc.br/xmlui/handle/123456789/84537.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-20T10:14:25Z (GMT). No. of bitstreams: 1 195587.pdf: 955703 bytes, checksum: b8985042df5f6b7ddeaa25bb04b73172 (MD5)
Tápia, Milena. „Redes neurais artificiais“. Florianópolis, SC, 2000. http://repositorio.ufsc.br/xmlui/handle/123456789/78807.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-17T19:37:03Z (GMT). No. of bitstreams: 0Bitstream added on 2014-09-25T17:12:29Z : No. of bitstreams: 1 178322.pdf: 8164173 bytes, checksum: 58dff9972980056ae164ad29c6b70fd0 (MD5)
Pesquisa que aborda o uso de Redes Neurais Artificiais (RNAs) - modelos biologicamente inspirados - no problema de processamento temporal, onde o principal objetivo é a previsão. Com base na Taxinomia de MOZER (1994) para processamento temporal, o foco do estudo recaiu em duas questões: 1) Definir a forma da memória de curto tempo, o conteúdo que deveria ser armazenado nesta, e como seus parametros serião atualizados; 2) e definir a topologia da rede (tamanho, estrutura e conexões), assim como os parâmetros do algoritmo de treinamento (taxa de aprendizado, termo de momento e outros). O modelo resultante foi comparado com a Metodologia de Box & Jenkins para modelos univariados, avaliado e criticado em termos de: capacidade representativa, processo de identificação e capacidade preditiva. Os resultados mostram que uma RNA, quando bem modelada, têm potencial para representar qualquer mapeamento complexo, não-linear, que pode governar mudanças em uma série de tempo. No estudo de caso foi possível prever o preço do ovo para um período de quatorze meses à frente
SILVA, Adenilton José da. „Redes neurais lógicas quânticas“. Universidade Federal de Pernambuco, 2011. https://repositorio.ufpe.br/handle/123456789/2273.
Der volle Inhalt der QuelleConselho Nacional de Desenvolvimento Científico e Tecnológico
Através da miniaturização dos componentes dos chips a cada ano a velocidade dos computadores é aproximadamente duplicada. Esta rápida redução dos componentes dos chips é conhecida como a Lei de Moore. Apesar de se manter verdadeira nos últimos anos, a lei de Moore está se aproximando de seu limite, pois os componentes dos chips estão se aproximando a escala atômica. Neste momento, será necessário considerar os efeitos da mecânica quântica sobre a computação. O estudo dos modelos de computação não convencionais, como a computação quântica, é um dos grandes desafios da pesquisa em computação no Brasil. O desenvolvimento de novos hardwares com tecnologias diferentes do silício pode ter consequências nas técnicas de desenvolvimento de hardware e software. O objetivo desta dissertação é investigar que vantagens podem ser obtidas através da aplicação de técnicas da computação quântica no desenvolvimento e treinamento de modelos de redes neurais artificiais. Três modelos de redes neurais quânticas baseados em modelos de redes neurais sem pesos foram propostos. Ao contrário dos outros modelos de redes neurais quânticas, as redes propostas nesta dissertação podem simular as redes em que foram baseadas. A principal vantagem dos modelos quânticos neurais propostos nesta dissertação está no seu algoritmo de treinamento, um algoritmo onde a rede neural é executada apenas uma vez independente do tamanho do conjunto de treinamento e da rede neural. O algoritmo proposto foi baseado em uma memória associativa quântica e no algoritmo de busca de Grover
Sandmann, Humberto Rodrigo. „Padrões de pulsos e computação em redes neurais com dinâmica“. Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-05092012-165022/.
Der volle Inhalt der QuelleThe signal processing done by the neural systems is highly efficient and complex, so that it attracts a large attention for research. Basically, all the signal processing functions are based on networks of neurons that send and receive spikes. Therefore, in general, the stimuli received from the sensory system by a biological neural network somehow are converted into spike trains. Here, in this thesis, we present a new architecture composed of two layers: the first layer receives streams of input stimuli and maps them on spike trains; the second layer receives these spike trains and classifies them in a sets of stimuli. In the first layer, the conversion of currents of stimuli on spike trains is made by a pulse-coupled neural network. Neurons in this context are like oscillators and have a natural frequency to shoot; when they are grouped into networks, they can be coordinated to present a global long-term dynamics. In turn, this global dynamics is also sensible to the input currents. In the second layer, the classification of spike trains in sets of stimuli is implemented by an integrate-and-re neuron. The typical behavior for this neuron is to shoot at least once every time that it receives a known spike train; otherwise, it should be in silence. The learning process of the second layer depends on the knowledge of the time interval of repetition of a spike train. Therefore, in this thesis, metrics are presented to define this time interval, thus giving autonomy to the architecture. It can be concluded on the basis of the tests developed that the architecture has a large capacity for mapping input currents on spike trains without requiring changes in its structure; moreover, the addition of the time dimension done by the first layer helps in the classification performed by the second layer. Thus, a new model to perform the encoding and decoding processes is presented, developed through a series of computational experiments and characterized by measurements of its dynamics.
Cavalcanti, Hugo Mauro Vasconcelos da Cunha. „Extração de caracteristicas via redes neurais“. [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259420.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-07-27T01:49:41Z (GMT). No. of bitstreams: 1 Cavalcanti_HugoMauroVasconcelosdaCunha_M.pdf: 6391593 bytes, checksum: 75cb2a1a256c8652d012f7153f370886 (MD5) Previous issue date: 2000
Resumo: A implementação de um sistema de reconhecimento de padrões requer a solução de alguns problemas básicos: Aquisição de Dados, Extração de Características e Classificação dos padrões. Apesar de muitos trabalhos estarem sendo feitos na tentativa de resolver o problema de Reconhecimento de Padrões utilizando Redes Neurais, poucos são os trabalhos que abordam o Problema de Extração de Características. Assim, nesta Tese propomos o Algoritmo de Extração de Características via Redes Neurais Lee/Cavalcanti. Este algoritmo encontra a quantidade mínima de características necessárias para resolver o problema de classificação de padrões utilizando uma rede neural do tipo Multilayer Parceptron (MLP). E baseia-se no fato de que todas as características informativas podem ser encontradas a partir da fronteira de decisão do problema. Então, mostramos como construímos o algoritmo e apresentamos alguns experimentos que provam a eficiência do mesmo. Inicialmente, alguns experimentos foram feitos utilizando dados sintéticos, mostrando a relação entre a fronteira de decisão teórica e a fronteira de decisão prática encontrada a partir da rede treinada. Em seguida, implementamos urna rede neural para classificação de assinaturas estáticas. Neste experimento, utilizamos originalmente 32 características. E, em seguida, utilizando o algoritmo de extração de características Lee/Cavalcanti, conseguimos 98,84% de precisão de classificação, com apenas 16 características. Desta forma, mostramos que o uso do algoritmo Lee/Cavalcanti pode encontrar a quantidade mínima de características de um problema de classificação de padrões. E, desta maneira, fazer com que a classificação do padrão seja realizada de forma mais rápida do que utilizando o conjunto original de amostras
Abstract: The design and implementation of Pattern Recognition systems require the solution ofthe following problems: Data Acquisition, Feature Extraction and Pattern Classification. Although, much effort has been expended to solve a Pattern Recognition problem using the Neural Networks approach, not many works have being done to solve the Feature Extraction problem. In this thesis, we propose the Lee/Cava1canti Feature Extraction Algorithm Via Neural Networks, which finds the minimum number of features necessary to solve the classification problem using Multilayer Perception (MLP) Neural Networks. This algorithm is based on informative features found from the Decision Boundary. We present how the algorithm was built and some experiments to prove its efficiency. Some experiments using synthetic data are shown, indicating the relationship between the practical decision boundary, obtained from the trained neural network, and the theoretic one. Then, we design a neural classifier for a static signature recognition and we test it using 32 features. Finally, using only 16 features, we test the classifier obtaining a 98,84% accuracy in relation to the accuracy gained in the first test. The use of only 16 features was obtained using Lee/Cava1canti Algorithm. The use of the Lee/Cava1canti Algorithm can reduce the number of features involved in a classification problem. Furthermore, it can make the system work faster with the same classification accuracy provided by the original set of features
Mestrado
Mestre em Engenharia Elétrica
Kapp, Angelita Fleig. „Aplicação de redes neurais à migração de serviços de telecomunicações de redes legadas para redes IP“. reponame:Repositório Institucional da UnB, 2007. http://repositorio.unb.br/handle/10482/3092.
Der volle Inhalt der QuelleSubmitted by Diogo Trindade Fóis (diogo_fois@hotmail.com) on 2009-11-26T20:36:26Z No. of bitstreams: 1 2007_AngelitaFleigKapp.PDF: 2854431 bytes, checksum: 7c18a4f4f583180d448d4fa471093d0c (MD5)
Approved for entry into archive by Carolina Campos(carolinacamposmaia@gmail.com) on 2010-01-11T16:32:40Z (GMT) No. of bitstreams: 1 2007_AngelitaFleigKapp.PDF: 2854431 bytes, checksum: 7c18a4f4f583180d448d4fa471093d0c (MD5)
Made available in DSpace on 2010-01-11T16:32:40Z (GMT). No. of bitstreams: 1 2007_AngelitaFleigKapp.PDF: 2854431 bytes, checksum: 7c18a4f4f583180d448d4fa471093d0c (MD5) Previous issue date: 2007-12-14
O planejamento e o dimensionamento de recursos, tanto humanos quanto materiais, devem estar suportados por dados que facilitem a sua execução e garantam uma assertividade mínima suficiente em seus resultados. Este trabalho trata deste e outros assuntos relacionados à predição do período - com a melhor assertividade possível - em que se deve migrar o transporte dos atuais serviços de conexão de redes, hoje suportados por redes totalmente Determinísticas, para redes Estatísticas. Esta estimativa de período será feita a partir de uma rede Neural de aprendizado Hebbiano, baseada na Transformada de Karhunen-Loève onde dados de evolução de flexibilidade, custo, confiabilidade e eficiência são comparados para redes IP (Internet Protocol) e redes não IP e o cruzamento destas duas curvas estima uma data onde os citados custo, confiabilidade e eficiência serão melhores para as redes baseadas em IP. __________________________________________________________________________________________ ABSTRACT
The human and material resources planning must be supported by data that makes this task easier and they must be as correct as possible. This work, based in this directive, tries to predict a period that the service transportation will migrate fro TDM (Time Division Multiplex) to IP (Internet Protocol) based Networks. This period estimate will use a Hebbian Learning Neural Network, based on Karhunen- Loève Transform where the flexibility evolution data, cost, trustworthiness and efficiency are compared for IP Networks and Non-IP Networks. The crossing of these two curves esteems a cited date where flexibility, cost, trustworthiness and efficiency will be better for IP based networks
Bertholdi, Paulo Roberto. „Utilizando redes neurais no reconhecimento de padrões cefalométricos“. reponame:Repositório Institucional da UFSC, 2012. http://repositorio.ufsc.br/xmlui/handle/123456789/84148.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-20T06:44:11Z (GMT). No. of bitstreams: 1 266455.pdf: 2195807 bytes, checksum: 6c4aa278c4912dca2b6f730745626ae8 (MD5)
A Inteligência Artificial tem sido um dos principais campos de estudo na área da Ciência da Computação tentando resolver problemas de difícil solução. Todos os problemas são difíceis até que sua solução seja conhecida (Fogel, 1995). Os métodos de abordagem de problemas de difícil solução encontram na Inteligência Artificial respostas satisfatórias através de paradigmas como os modelos conexionistas baseados na estrutura neuronal do cérebro humano. As Redes Neurais surgiram com o intuito de obter resultados satisfatórios comparados aos sistemas especialistas, que falham em área de competência não restrita. Essa característica é imprescindível quando tratamos problemas voltados ao âmbito biológico, pois é preciso interagir com o meio, reconhecer padrões, adaptar-se e estabelecer processos indutivos e dedutivos. A Ciência da Computação tem propiciado a evolução do conhecimento na área de Ciência Biológica e da Saúde. Citando pesquisas como o Projeto Genoma, visualizamos a Ciência da Computação não apenas como fator auxiliar, mas sim como fator limitante no desenvolvimento destas pesquisas. Isso têm direcionado grande número de trabalhos de defesa de tese voltados para a área de Ciência Biológica e da Saúde objetivando a aplicação de Inteligência Artificial em processos de classificação e diagnóstico, onde os métodos convencionais falham ou a precisão não alcança um valor de confiança suficiente. A proposta deste trabalho é utilizar as Redes Neurais como ferramenta no processo de classificação cefalométrica de um indivíduo. A Cefalometria utiliza métodos estatísticos convencionais para obtenção destes resultados, estudando um universo de indivíduos restritos a áreas geopoliticamente isoladas ou com pouco cruzamento racial. A aplicação de Redes Neurais como Método de Classificação Cefalométrica pode aproximar a precisão dos resultados a um valor de confiança suficiente comparada aos métodos atuais.
Artificial Intelligence has been one of the main matters in Computational Science area that tries to find solutions for difficult problems or those ones whereas is impossible to be solved. All the problems are difficult until their solution be known. (Fogel 1995). Approaching methods for difficult problems can get answers by paradigms like connexionistic models based on human brain neuronal structures. Neural Networks appeared intending to obtain satisfactory results compared to Specialist System that fails in unrestricted competence area. This characteristic is needful when we work out in problems pertaining to biological scopes causer we need to interact with the environment, recognizing patterns and adapting ourselves to establish inductive and deductive process. Computational Science has been providing knowledge evolution in Biological Science and Health area. Mentioning researches such as Genome Project we foresee Computational Science not only as an auxiliary factor but also a limitable one for these researches development. So this has been guiding a great number of works for thesis presentations involving Biological Science and Health areas aiming the use of Artificial Intelligence in diagnosis and classification processes whereas conventional methods or precision does not reach enough reliability. Cephalometry, an Biological Science area for studying human cranial measures, uses conventional statistical methods to obtain anthropomorphic characteristics studying an universe of individuals, restricted to an isolated geopolitical areas, or with few racial crossing. The proposal for using Neural Network as a Cephalometric classification method aims, in this work, to approach results in precision and accuracy an enough reliable value compared to the actual methods.
Bordignon, Fernando Luis. „Aprendizado extremo para redes neurais fuzzy baseadas em uninormas“. [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259061.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-22T00:50:20Z (GMT). No. of bitstreams: 1 Bordignon_FernandoLuis_M.pdf: 1666872 bytes, checksum: 4d838dfb4ec418698d9ecd3b74e7c981 (MD5) Previous issue date: 2013
Resumo: Sistemas evolutivos são sistemas com alto nível de adaptação capazes de modificar simultaneamente suas estruturas e parâmetros a partir de um fluxo de dados, recursivamente. Aprendizagem a partir de fluxos de dados é um problema contemporâneo e difícil devido à taxa de aumento da dimensão, tamanho e disponibilidade temporal de dados, criando dificuldades para métodos tradicionais de aprendizado. Esta dissertação, além de apresentar uma revisão da literatura de sistemas evolutivos e redes neurais fuzzy, aborda uma estrutura e introduz um método de aprendizagem evolutivo para treinar redes neurais híbridas baseadas em uninormas, usando conceitos de aprendizado extremo. Neurônios baseados em uninormas fundamentados nas normas e conormas triangulares generalizam neurônios fuzzy. Uninormas trazem flexibilidade e generalidade a modelos neurais fuzzy, pois elas podem se comportar como normas triangulares, conormas triangulares, ou de forma intermediária por meio do ajuste de elementos identidade. Este recurso adiciona uma forma de plasticidade em modelos de redes neurais. Um método de agrupamento recursivo para granularizar o espaço de entrada e um esquema baseado no aprendizado extremo compõem um algoritmo para treinar a rede neural. _E provado que uma versão estática da rede neural fuzzy baseada em uninormas aproxima funções contínuas em domínios compactos, ou seja, _e um aproximador universal. Postula-se, e experimentos computacionais endossam, que a rede neural fuzzy evolutiva compartilha capacidade de aproximação equivalente, ou melhor, em ambientes dinâmicos, do que as suas equivalentes estáticas
Abstract: Evolving systems are highly adaptive systems able to simultaneously modify their structures and parameters from a stream of data, online. Learning from data streams is a contemporary and challenging issue due to the increasing rate of the size and temporal availability of data, turning the application of traditional learning methods limited. This dissertation, in addition to reviewing the literature of evolving systems and neuro fuzzy networks, addresses a structure and introduces an evolving learning approach to train uninorm-based hybrid neural networks using extreme learning concepts. Uninorm-based neurons, rooted in triangular norms and conorms, generalize fuzzy neurons. Uninorms bring flexibility and generality to fuzzy neuron models as they can behave like triangular norms, triangular conorms, or in between by adjusting identity elements. This feature adds a form of plasticity in neural network modeling. An incremental clustering method is used to granulate the input space, and a scheme based on extreme learning is developed to train the neural network. It is proved that a static version of the uninorm-based neuro fuzzy network approximate continuous functions in compact domains, i.e. it is a universal approximator. It is postulated and computational experiments endorse, that the evolving neuro fuzzy network share equivalent or better approximation capability in dynamic environments than their static counterparts
Mestrado
Engenharia de Computação
Mestre em Engenharia Elétrica
Romero, Roseli Aparecida Francelin. „Otimização de sistemas através de redes neurais artificiais“. [s.n.], 1993. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260763.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola
Made available in DSpace on 2018-08-17T06:20:58Z (GMT). No. of bitstreams: 1 Romero_RoseliAparecidaFrancelin_M.pdf: 7628829 bytes, checksum: 4e2b93116a7c60ea40a9e9c6763ff7dd (MD5) Previous issue date: 1993
Resumo: Esta tese apresenta uma Rede Neural Multi-Camadas com realimentação, visando a solução de problemas de otimização estáticos irrestritos e restritos. Um novo esquema de atualização dos pesos é proposto. Este esquema é uma modificação do algoritmo back-propagation e foi desenvolvido com base em resultados da teoria de dualidade e esquemas do tipo subgradientes. Resultados computacionais e uma implementação paralela são apresentados, que mostram o desempenho e a consistência do modelo proposto. Detalhes de implementação e análise comparativa do comportamento da rede em relação a outras abordagens são também incluídos. Outra classe de Redes Neurais Artificiais constituída de redes de duas camadas com realimentação também é proposta, visando a solução de problemas de otimização dinâmica discreta não aditivamente separáveis. Esta abordagem propõe um modelo recorrente generalizado de neurônio e um método direto para designar os pesos da rede e incorporar conhecimento sobre o sistema dado. Este método fundamenta-se no Princípio de Otimalidade de Bellmann e na troca de mensagens que ocorrem entre os neurônios durante o processamento químico sináptico. Uma análise comparativa dos requisitos computacionais exigidos é realizada comprovando a vantagem da abordagem proposta com relação ao algoritmo convencional da Programação Dinâmica. Problemas conhecidos de otimização como o problema da mochila e o problema do caminho mínimo, problemas de reguladores lineares discretos e um problema de planejamento de sistemas de potência a longo prazo são resolvidos para mostrar o desempenho e utilização da abordagem proposta.
Abstract: This thesis presents an artificial neural network with a three-Iayer feedback topology to solve continuous con ex unconstrained and constrained optimization problems. A new scheme for updating the weights is introduced. This scheme is a modification of the back-propagation algorithm. It is based on the duality theory and subgradient methods. Computational results and a parallel implementation are presented which show the performance and validate the proposed approach. Further, details of implementation and comparative analysis with others optimization techniques are included. Another class of artificial neural networks, with a two-Iayer feedback topology to solve nonlinear discrete dynamic optimization problems has a.lso been developed. Generalized recurrent neurons are introduced. A direct method to assign the weights of neural networks is presented. The method is based on the Bellmann's Optimality PrincipIe and in the interchange of information which occur during the synaptic chemical processing among neurons. A comparative analysis of the computational requirements has been performed. This analysis has highlighted advantages of the new approach when compared to the standard algorithm from dynamie programming. The technique has been applied to several important optimization problems, such as the knapsaek and shortest pa.th problems. ln addition, two other applications: a power system long-range planning problem and discrete linear regulator problems have been tackled which demonstra te the applicability of the methodology.
Mestrado
Doutor em Engenharia Elétrica
Bertini, Junior João Roberto. „Aprendizado supervisionado usando redes neurais construtivas“. Universidade Federal de São Carlos, 2006. https://repositorio.ufscar.br/handle/ufscar/323.
Der volle Inhalt der QuelleFinanciadora de Estudos e Projetos
Constructive neural learning is a neural learning model that does not assume a fixed network topology before training begins. The main characteristic of this learning model is the dynamic construction of the network s hidden layers that occurs simultaneously with training. This work investigates three topics related to constructive neural learning namely algorithms for training an individual TLU, constructive neural algorithms for two class problems and constructive neural algorithms for multiclass problems. The first research topic is approached by discussing a few TLU training algorithms, namely Perceptron, Pocket, Thermal, Modified Thermal, MinOver and BCP. This work approaches constructive neural learning for two class classification tasks by initially reviewing Tower, Pyramid, Tiling and Upstart algorithms, aiming at their multiclass versions. Next five constructive neural algorithms namely Shift, Offset, PTI, Perceptron Cascade and Sequential are investigated and two hybrid algorithms are proposed: Hybrid Tiling, that does not restrict the TLU s training to only one algorithm and the OffTiling, a collaborative approach based on Tiling and Offset. Multiclass constructive neural learning was approached by investigating TLUs training algorithms that deal with multiclass as well as by investigating multiclass versions of Tower, Pyramid, Tiling, Upstart and Perceptron Cascade. This research work also describes an empirical evaluation of all the investigated algorithms conducted using several knowledge domains. Results are discussed and analyzed.
Aprendizado neural construtivo é um modelo de aprendizado neural que não pressupõe a definição de uma topologia de rede fixada antes do início do treinamento. A principal característica deste modelo de aprendizado é a construção dinâmica das camadas intermediárias da rede, à medida que vão sendo necessárias ao seu treinamento. Este trabalho investiga três frentes de pesquisas com relação ao aprendizado neural construtivo, a saber, algoritmos para o treinamento de TLUs, algoritmos neurais construtivos para problemas que envolvem duas classes e algoritmos neurais construtivos para o tratamento de problemas multiclasses. Com relação à primeira frente de pesquisa os algoritmos discutidos para o treinamento de TLUs são o Perceptron, o Pocket, o PMR, o Thermal, o Thermal Modificado, o MinOver e o BPC. Na frente de pesquisa relativa ao aprendizado neural construtivo para duas classes são revistos os algoritmos Tower, Pyramid, Tiling e Upstart, para que as versões multiclasses desses algoritmos possam ser tratadas. São investigados os algoritmos neurais construtivos Shift, Offset, PTI, Perceptron Cascade e Sequential e propostos dois algoritmos híbridos: o Tiling Híbrido, que não restringe o treinamento de TLUs a um único algoritmo e o OffTiling que agrega os algoritmos Tiling e Offset. A frente que focaliza o aprendizado neural construtivo multiclasse investiga os algoritmos para o treinamento de TLUs quando o problema envolvido apresentar mais que duas classes bem como apresenta e discute as versões multiclasses dos algoritmos Tower, Pyramid, Tiling, Upstart e Perceptron Cascade. O trabalho descreve uma avaliação empírica dos algoritmos investigados, em vários domínios de conhecimento bem como discute e analisa os resultados obtidos.
Rosa, Raul Arthur Fernandes 1989. „Redes neurais evolutivas com aprendizado extremo recursivo“. [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259065.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-26T08:06:32Z (GMT). No. of bitstreams: 1 Rosa_RaulArthurFernandes_M.pdf: 8750754 bytes, checksum: 0535142e4de0e75e311aea59a977386e (MD5) Previous issue date: 2014
Resumo: Esta dissertação estuda uma classe de redes neurais evolutivas para modelagem de sistemas a partir de um fluxo de dados. Esta classe é caracterizada por redes evolutivas com estruturas feedforward e uma camada intermediária cujo número de neurônios é variável e determinado durante a modelagem. A aprendizagem consiste em utilizar métodos de agrupamento para estimar o número de neurônios na camada intermediária e algoritmos de aprendizagem extrema para determinar os pesos da camada intermediária e de saída da rede. Neste caso, as redes neurais são chamadas de redes neurais evolutivas. Um caso particular de redes evolutivas é quando o número de neurônios da camada intermediária é determinado a priori, mantido fixo, e somente os pesos da camada intermediária e de saída da rede são atualizados de acordo com dados de entrada. Os algoritmos de agrupamento e de aprendizagem extrema que compõem os métodos evolutivos são recursivos, pois a aprendizagem ocorre de acordo com o processamento de um fluxo de dados. Em particular, duas redes neurais evolutivas são propostas neste trabalho. A primeira é uma rede neural nebulosa híbrida evolutiva. Os neurônios da camada intermediária desta rede são unineurônios, neurônios nebulosos com processamento sináptico realizado por uninormas. Os neurônios da camada de saída são sigmoidais. Um algoritmo recursivo de agrupamento baseado em densidade, chamado de nuvem, é utilizado para particionar o espaço de entrada-saída do sistema e estimar o número de neurônios da camada intermediária da rede; a cada nuvem corresponde um neurônio. Os pesos da rede neural nebulosa híbrida são determinados utilizando a máquina de aprendizado extremo com o algoritmo quadrados mínimos recursivo ponderado. O segundo tipo de rede proposto neste trabalho é uma rede neural multicamada evolutiva com neurônios sigmoidais na camada intermediária e de saída. Similarmente à rede híbrida, nuvens particionam o espaço de entrada-saída do sistema e são utilizadas para estimar o número de neurônios da camada intermediária. O algoritmo para determinar os pesos da rede é a mesma versão recursiva da máquina de aprendizado extremo. Além das redes neurais evolutivas, sugere-se também uma variação da rede adaptativa OS-ELM (online sequential extreme learning machine) mantendo o número de neurônios na camada intermediária fixo e introduzindo neurônios sigmoidais na camada de saída. Neste caso, a aprendizagem usa o algoritmo dos quadrados mínimos recursivo ponderado no aprendizado extremo. As redes foram analisadas utilizando dois benchmarks clássicos: identificação de forno a gás com o conjunto de dados de Box-Jenkins e previsão de série temporal caótica de Mackey-Glass. Dados sintéticos foram gerados para analisar as redes neurais na modelagem de sistemas com parâmetros e estrutura variantes no tempo (concept drif e concept shift). Os desempenhos foram quantificados usando a raiz quadrada do erro quadrado médio e avaliados com o teste estatístico de Deibold-Mariano. Os desempenhos das redes neurais evolutivas e da rede adaptativa foram comparados com os desempenhos da rede neural com aprendizagem extrema e dos métodos de modelagem evolutivos representativos do estado da arte. Os resultados mostram que as redes neurais evolutivas sugeridas neste trabalho são competitivas e têm desempenhos similares ou superiores às abordagens evolutivas propostas na literatura
Abstract: Abstract: This dissertation studies a class of evolving neural networks for system modeling from data streams. The class encompasses single hidden layer feedforward neural networks with variable and online de nition of the number of hidden neurons. Evolving neural network learning uses clustering methods to estimate the number of hidden neurons simultaneously with extreme learning algorithms to compute the weights of the hidden and output layers. A particular case is when the evolving network keeps the number of hidden neurons xed. In this case, the number of hidden neurons is found a priori, and the hidden and output layer weights updated as data are input. Clustering and extreme learning algorithms are recursive. Therefore, the learning process may occur online or real-time using data stream as input. Two evolving neural networks are suggested in this dissertation. The rst is na evolving hybrid fuzzy neural network with unineurons in the hidden layer. Unineurons are fuzzy neurons whose synaptic processing is performed using uninorms. The output neurons are sigmoidals. A recursive clustering algorithm based on density and data clouds is used to granulate the input-output space, and to estimate the number of hidden neurons of the network. Each cloud corresponds to a hidden neuron. The weights of the hybrid fuzzy neural network are found using the extreme learning machine and the weighted recursive least squares algorithm. The second network is an evolving multilayer neural network with sigmoidal hidden and output neurons. Like the hybrid neural fuzzy network, clouds granulate the input-output space and gives the number of hidden neurons. The algorithm to compute the network weights is the same recursive version of the extreme learning machine. A variation of the adaptive OS-ELM (online sequential extreme learning machine) network is also suggested. Similarly as the original, the new OS-ELM xes the number of hidden neurons, but uses sigmoidal instead of linear neurons in the output layer. The new OS-ELM also uses weighted recursive least square.The hybrid and neural networks were evaluated using two classic benchmarks: the gas furnace identi cation using the Box-Jenkins data, and forecasting of the chaotic Mackey-Glass time series. Synthetic data were produced to evaluate the neural networks when modeling systems with concept drift and concept shift. This a modeling circumstance in which system structure and parameters change simultaneously. Evaluation was done using the root mean square error and the Deibold-Mariano statistical test. The performance of the evolving and adaptive neural networks was compared against neural network with extreme learning, and evolving modeling methods representative of the current state of the art. The results show that the evolving neural networks and the adaptive network suggested in this dissertation are competitive and have similar or superior performance than the evolving approaches proposed in the literature
Mestrado
Engenharia de Computação
Mestre em Engenharia Elétrica
Barbieri, Heitor. „Sirena : um simulador de redes neurais artificiais“. [s.n.], 1994. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276032.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Ciencia da Computação
Made available in DSpace on 2018-07-19T14:51:10Z (GMT). No. of bitstreams: 1 Barbieri_Heitor_M.pdf: 3338070 bytes, checksum: 7e01fc370d8436edb4d799783be57ff8 (MD5) Previous issue date: 1994
Resumo: Rede Neural Artificial (RNA) é um modelo que tenta emular uma Rede Neural Biológica. A área de RNA tem se mostrado bastante promissora, o que pode ser comprovado pela quantidade de trabalhos publicados e de eventos científicos. Mas para que as RNAs atinjam o escopo de aplicações desejado, muitas de suas limitações atuais terão que ser superadas. Ainda não é claro e bem estabelecido o funcionamento das RNAs, não existem metodologias boas e completas para a utilização das mesmas em aplicações, isto é, metodologias que diante de um problema específico a ser resolvido, indiquem qual a topologia de rede, o algoritmo de aprendizagem e a amostragem de informações adequadas ao funcionamento desejado. Em não se tendo uma metodologia que indique a combinação ótima dos elementos de uma RNA para uma determinada aplicação, resta aos usuários a opção de partir de uma base teórica e, utilizando-se de métodos empíricos, ir formando regras individuais de como conseguir as melhores combinações dos elementos formadores da rede. Esta técnica, porém, apresenta muitas dificuldades em sua realização devido à grande quantidade de variáveis que precisam ser avaliadas durante todo o processo de desenvolvimento da rede. O presente trabalho busca facilitar o entendimento do funcionamento das RNAs através da familiarização do usuário com os seus elementos formadores. Foi desenvolvido um simulador de RNAs, denominado Sirena, que através de sua interface gráfica procura minimizar a dificuldade de entendimento dos processos de baixo nível realizados pelas RNAs. Durante o processo de simulação pode-se ter acesso a diversas representações, tanto qualitativas quanto quantitativas, que visam refletir as alterações que ocorrem na rede rias fases de aprendizagem e inferência.
Abstract: Artificial Neural Net (ANN) is a model that emulates a Biological Neural Net. The ANN field has showed very promising which can be verified by the number of published papers and scientific events. In spite, to reach the desired ANN applications scope, many of ANN current limitations have to be overcome since it is not yet and well established the ANN functioning . There is no good and complete methodologies for construct ANN applications, i.e., for a specific problem to be solved, no methodology indicates what the net topology is, the learning algorithm and the sample of information suitable to the desired performance. If there is no methodology that indicates the better combination of the ANN elements to a specific application, the users have the option to start from a theoretical base and, by using empirical methods, begin constructing personal rules that indicates. the better combination of neural elements. The execution of this technique is difficulty because the number of variables that need to be evaluated during the net development process The focus of this work is facilitate the understanding of the ANN functioning through the user familiarization with its elements. A ANN simulator named Sirena was developed and its graphical interface aim to minimize the understanding difficulties of the low level processes executed by ANNs. During the simulation process one can access to several qualitative and quantitative representations that reflect the net alterations in the learning and inference phases.
Mestrado
Mestre em Ciência da Computação
Araújo, Fernando Henrique Pimentel. „Trading system aplicado à BOVESPA utilizando redes neurais e computação evolutiva“. Instituto Tecnológico de Aeronáutica, 2010. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1016.
Der volle Inhalt der QuelleBabini, Maurizio [UNESP]. „Reconhecimento de padrões lexicais por meio de redes neurais“. Universidade Estadual Paulista (UNESP), 2006. http://hdl.handle.net/11449/87226.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A compreensão da linguagem humana é uma das tarefas mais difíceis do Processamento da Linguagem Natural (PLN) e de modo mais geral da Automação e da Inteligência Artificial (IA). O objetivo desta pesquisa é estudar os mecanismos que permitem utilizar uma rede neural artificial para poder interpretar textos. Este trabalho deveria ser utilizado, futuramente, para criar uma interface em um ambiente de co-projeto, capaz de agrupar/classificar termos/conceitos, reconhecendo padrões textuais. Para alcançar nossos objetivos de pesquisa em nível de Mestrado, utilizamos o modelo semântico de Bernard Pottier, e uma Rede Neural Artificial de Kohonen. A escolha do modelo de Bernard Pottier deve-se ao fato de que este autor é um dos mais conceituados lingüistas da atualidade e que seu modelo é largamente utilizado por pesquisadores de vários paises, tendo sido, assim, comprovada a sua validade. No que diz respeito à rede de Kohonen, acreditamos que seja a mais indicada para este tipo de aplicação, tendo em vista o fato de que essa rede tenta imitar o funcionamento do cérebro humano, em particular, reproduzindo o mapeamento de suas áreas especializadas, e tendo como hipótese de partida que, no córtex humano, conceitos similares ou de áreas afins distribuem-se em áreas limítrofes. A escolha desse tipo de rede para o nosso trabalho deve-se, outrossim, ao fato de que ela utiliza um tipo de treinamento competitivo e não-supervisionado que permite organizar os vetores (dados) de entrada em agrupamentos (clusters).
The understanding of human language is one of the most difficult tasks of Natural Language Processing (NLP), and, in general, of Automation and Artificial Intelligence (AI). The aim of our research is to study the mechanisms that allow using an artificial neural network for interpreting text. Later, our work should be used to create an interface, in a hardware/software co-design environment, capable of clustering/classifying terms/concepts, and recognizing text patterns. In order to achieve the objectives of our research, we used the semantic model of Bernard Pottier, and a Kohonen Artificial Neural Network. The choice of Bernard Pottier's model was motivated by the fact that the author is one of the most eminent linguists nowadays, and his model is largely used by researchers in many countries, thus proving the validity of his proposal. About the Kohonen net, we believe that it is the most appropriate net for this kind of application, due to the fact that this net tries to imitate the functioning of the human brain, particularly reproducing the map of its specialized areas, as well as due to the fact that this net has as initial hypothesis that, in the human cortex, similar concepts or concepts of similar areas are distributed in closed areas. Another reason for the choice of this kind of net in our study is that it uses a competitive and non-supervising training, that allows organizing entry vectors (data) in clusters.
Ballini, Rosangela 1969. „Analise e previsões de vasões utilizando modelos de series temporais, redes neurais e redes neurais nebulosas“. [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260553.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-07-27T14:20:08Z (GMT). No. of bitstreams: 1 Ballini_Rosangela_D.pdf: 10361310 bytes, checksum: 8286d66a9aea521833a85b0bdf668e0f (MD5) Previous issue date: 2000
Resumo: Análise e previsão de vazões são de fundamental importância no planejamento da operação de sistemas de recursos hídricos. Uma das grandes dificuldades na previsão das séries de vazões é a presença da sazonalidade devido aos períodos de cheia e seca do ano. Os modelos estocásticos foram, por um longo tempo, a alternativa mais comum aos modelos determinísticos ou hidrológicos na análise e previsão de vazões, baseados principalmente na metodologia de Box & Jenkins. Esta metodologia exige algum tipo de manuseio nos dados para tratar a não-estacionariedade ou o uso de modelos periódicos, necessitando de uma laboriosa formulação teórica para os procedimentos estatísticos. Redes neurais artificiais, especialmente redes multi-camadas com algoritmo back-propagation vêm sendo sugeridas para análise de séries temporais devido a sua capacidade para tratar com relações não-lineares.de entrada-saída, destacando sua habilidade de aprendizado e capacidade de generalização, associação e busca paralela. Estas qualidades as tornam capazes de identificar e assimilar as características mais marcantes das séries, tais como sazonalidade, periodicidade, tendência, entre outras, muitas vezes camufladas por ruídos. A capacidade de mapeamentos complexos das redes neurais cresce com o número de camadas e neurônios, acarretando :illaior tempo de processamento bem como considerável soma de dados. Entretanto, na prática muitas vezes os parâmetros devem ser estimados rapidamente e somente uma pequena quantidade de dados é disponível. Freqüentemente, dados do mundo real apresentam ruídos, podendo conter contradições e imperfeições. Tolerância a imprecisão e incertezas é também exigida para considerar tratabilidade e robustez. Conjuntos nebulosos baseados em modelos de análise de dados vêm sendo empregados sob essas hipóteses. A aplicação de modelos de redes neurais nebulosas une os benefícios das redes neurais e da teoria de conjuntos nebulosos, combinando-os em um sistema integrado para previsão de vazões naturais médias mensais. São realizadas análise e previsão de vazões usando modelos de séries temporais, redes neurais e redes neurais nebulosas para previsão um passo à frente e vários passos à frente para as séries das usinas hidroelétricas brasileiras localizadas em diferentes regiões. O desempenho dos modelos foi comparado e os resultados mostraram que os modelos propostos apresentaram melhor desempenho que as outras abordagens tanto para previsão um passo à frente como para previsão com vários passos à frente
Abstract: Analysis and forecast of seasonal stream flow series are of utmost importance in the operation planning of water resources systems. One of the greatest difficulties in forecasting of those series is the seasonality nature of stream flow series due to wet and dry periods of the year. For a long time, the use of stochastic models, based on the c1assic Box & Jenkins methodology, were the most employed alternative to the deterministic or hydrologic models in the analysis and forecast of stream flow series. This methodology requires either some kind of data manipulation to deal with the nonstationarity or the use of periodic models. Therefore the statistical procedures, requires an arduous theoretical formulation. Artificial Neural Networks (ANN), especially multilayer perceptrons with a back-propagation algorithm, have recently been suggested for time series analysis. They have the ability to deal with nonlinear input-output relationships. Their major assets are the learning ability and generalization, association and parallel search capability. These qualities enable them to identify and to assimilate some of the features of the series as seasonality, periodicity, tendency sometimes difficult to detect under noise. The capability of complex mapping of the ANN increases with the number of layers and neurons. The use of ANN usually requires the investment of a long period of time in the modeling process, as well as a considerable amount of data. ln practice, however, the parameters usually must be quickly estimated and only a small quantity of data is available. Very often, real world data are noisy, and the collected data may contain contradictions and imperfections. Tolerance for imprecision and uncertainty is also required to achieve tractability and robustness. Fuzzy sets based data analysis models have been especially suitable for these purposes. This suggests the application of neurofuzzy network models to seasonal stream flow forecasting. These models combine the advantages of the ANN and fuzzy set based approaches in a single integrated decision-making system. Analysis and forecast of stream flows one-step-ahead and multi-step-ahead are accomplished, using time series models, neural networks, and neurofuzzy networks. Database of average monthly inflows from Brazilian hydroelectric plants located in different river basins were used. The performance of the models was compared and the results show that the models here proposed provide a better performance than the others ones considering one-step-ahead forecasting and multi-step-ahead forecasting
Doutorado
Doutor em Engenharia Elétrica
Araújo, Georger Rommel Ferreira de. „Agrupamento de documentos forenses utilizando redes neurais art1“. reponame:Repositório Institucional da UnB, 2011. http://repositorio.unb.br/handle/10482/11123.
Der volle Inhalt der QuelleSubmitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2012-09-05T15:13:09Z No. of bitstreams: 1 2011_GeorgerRommelFerreiraAraujo.PDF: 2835953 bytes, checksum: dd16eaff79eecf269f263e5c9d9db626 (MD5)
Approved for entry into archive by Luanna Maia(luanna@bce.unb.br) on 2012-09-10T13:05:29Z (GMT) No. of bitstreams: 1 2011_GeorgerRommelFerreiraAraujo.PDF: 2835953 bytes, checksum: dd16eaff79eecf269f263e5c9d9db626 (MD5)
Made available in DSpace on 2012-09-10T13:05:29Z (GMT). No. of bitstreams: 1 2011_GeorgerRommelFerreiraAraujo.PDF: 2835953 bytes, checksum: dd16eaff79eecf269f263e5c9d9db626 (MD5)
Coleções textuais de Informática Forense são normalmente muito heterogêneas. Embora técnicas de classificação, por tipo de arquivo ou outros critérios, possam auxiliar na exploração dessas coleções textuais, elas não ajudam a agrupar documentos com conteúdo assemelhado. A Teoria da Ressonân- cia Adaptativa (Adaptive Resonance Theory – ART) descreve várias Redes Neurais Artificiais auto-organizáveis que utilizam um processo de aprendizado não-supervisionado e são especialmente projetadas para resolver o dilema da estabilidade/plasticidade. Este trabalho aplica o algoritmo ART1 (ART com vetores de entrada binários) para agrupar tematicamente documentos retor- nados de uma ferramenta de busca utilizada com coleções textuais forenses. Documentos que antes seriam apresentados em uma lista desorganizada e frequentemente longa passam a ser agrupados por conteúdo, oferecendo ao perito uma forma organizada de obter uma visão geral do conteúdo dos documentos durante o exame pericial. Os resultados experimentais são indicativos da validade da abordagem proposta, obtendo uma correspondência adequada entre a solução de agrupamento processada com o protótipo de aplicação desenvolvido e as classes-padrão definidas por um especialista. ______________________________________________________________________________ ABSTRACT
Computer forensic text corpora are usually very heterogeneous. While classifi- cation, by file type or other criteria, should be an aid in the exploration of such corpora, it does not help in the task of grouping together documents themati- cally. Adaptive Resonance Theory (ART) describes a number of self-organizing artificial neural networks that employ an unsupervised learning process and are specially designed to learn new patterns without forgetting what they have al- ready learned, overcoming the important restriction defined by the stability/ plasticity dilemma. This work applies the ART1 algorithm (ART with binary input vectors) to thematically cluster documents returned from a query tool used with forensic text corpora. Documents that would previously be presented in a disorganized and often long list are thematically clustered, giving the ex- aminer an organized way of obtaining a general picture of document content during forensic examinations. Experimental results validated the approach, achieving adequate agreement between the clustering solution processed with the developed prototype software package and the gold standard defined by a domain specialist.
Silva, Ivan Nunes da. „Estimação parametrica robusta atraves de redes neurais artificiais“. [s.n.], 1995. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261502.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica
Made available in DSpace on 2018-07-20T00:12:07Z (GMT). No. of bitstreams: 1 Silva_IvanNunesda_M.pdf: 6624700 bytes, checksum: 47db2158e7cca5cd5b4d34c1794ccc63 (MD5) Previous issue date: 1995
Resumo: Redes Neurais Artificiais atingem altas taxas de computação através de um número massivo de elementos processadores simples com um alto grau de conectividade entre estes elementos. Redes neurais com conexões realimentadas podem ser utilizadas para resolver problemas de otimização. Nesta dissertação utilizam-se Redes Neurais Artificiais do tipo Hopfield, na solução de problemas de Estimação Paramétrica Robusta com perturbação desconhecida-mas-limitada. A rede de Hopfield discreta é usada no cálculo de regiões de incerteza para os parâmetros do modelo. Qualquer elemento pertencente a estas regiões são considerados um bom estimador dos parâmetros reais do processo. Uma Rede de Hopfield Modificada também é descrita e é utilizada para assegurar maior eficiência e confiabilidade na obtenção de resultados. Análises são realizadas comparando os resultados obtidos pela rede em relação a outras abordagens tradicionais de cálculo de incertezas paramétricas. Os parâmetros internos das Redes para o problema são derivados utilizando uma técnica denominada subespaço-válido de soluções. Estes parâmetros são explicitamente calculados, baseado nas especificações do problema, e devem assegurar a convergência da rede para um ponto de equilíbrio que representa uma solução para o problema de estimação robusta de modelos com perturbações desconhecidas-mas-limitadas
Abstract: Artificial Neural Networks can achieve high computation rates by employing a massive number of simple processing elements with a high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model to solve a rich class of optimization problems. This dissertation presents an application of Hopfield's Neural Networks in Robust Parametric Estimation with unknown-but-bounded disturbance. The Discret Hopfield's Network is used to calculate a parameter uncertainty set for model parameters. Any element in this set can be considered a good estimator for the real parameters. A Modified Hopfield's Network has also been described and it is useful for getting efficient and reliable sets. Comparative analysis with others robust estimation approaches are included. The Valid-Subspace technique is used to obtain the internal parameters of the Hopfield's Neural Network. These parameters are explicitlycomputed, based upon problem specifications, to assure the network convergence. In this case, the equilibrium point represents a solution to robust estimation problem with unknown-but-bounded error
Mestrado
Mestre em Engenharia Elétrica
Silva, Caroline. „Reconhecimento de expressões faciais utilizando redes neurais artificiais“. Universidade Federal da Bahia. Escola Politécnica, 2012. http://repositorio.ufba.br/ri/handle/ri/13299.
Der volle Inhalt der QuelleApproved for entry into archive by LIVIA FREITAS (livia.freitas@ufba.br) on 2013-10-29T16:09:52Z (GMT) No. of bitstreams: 1 dissertacao_mestrado_caroline-silva.pdf: 23364621 bytes, checksum: fcb96ba9a221886b4a24da02bb78ea90 (MD5)
Made available in DSpace on 2013-10-29T16:09:52Z (GMT). No. of bitstreams: 1 dissertacao_mestrado_caroline-silva.pdf: 23364621 bytes, checksum: fcb96ba9a221886b4a24da02bb78ea90 (MD5)
A an álise autom ática de expressões faciais tem atra do cada vez mais a aten ção de pesquisadores em diversas áreas como psicologia, ciência da computa ção, lingu ística, neurociência e áreas relacionadas. Nas ultimas d ecadas, pesquisadores têm realizado muitos trabalhos e in úmeras abordagens promissoras para o reconhecimento autom atico de expressões faciais têm surgido. Este crescente interesse surgiu atrav és do desenvolvimento de novos m étodos de processamento de imagens, novas abordagens para detec ção e reconhecimento facial, bem como o aumento da capacidade computacional. Nesta disserta ção é proposto um sistema de reconhecimento autom ático de expressões faciais. O sistema proposto clássi ca sete diferentes expressões: felicidade, raiva, tristeza, surpresa, desgosto,medo e neutra. Utilizou-se as bases de dados MUG Facial Expression e Face and Gesture Recognition Research Network (FG-NET). Estas bases apresentam imagens com plano de fundo uniforme e n~ao uniforme. As bases de dados tambéem cont ém imagens de indiv íduos que apresentam diferenças individuais tais como: barba, bigode e oculos. Os resultados experimentais demonstram que o sistema proposto baseado em redes neurais arti ficiais alcan ça uma taxa m édia de acerto de 97,62% para as sete diferentes expressões faciais defi nidas.
Silva, Flávio de Almeida e. „Redes neurais hierárquicas para implementação de comportamentos em agentes autônomos“. Florianópolis, SC, 2001. http://repositorio.ufsc.br/xmlui/handle/123456789/79886.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-18T08:25:39Z (GMT). No. of bitstreams: 0Bitstream added on 2014-09-25T22:30:13Z : No. of bitstreams: 1 181316.pdf: 6479311 bytes, checksum: 7e563d21506f12fe2cea4cb589fe5f37 (MD5)
Este trabalho visa mostrar a existência de uma hierarquia nas redes neurais biológicas, como também, será apresentada uma alternativa para implementação de agentes autônomos. O sistema computacional está baseado nos comportamentos reflexivos, reativos e instintivos dos animais. Para gerar estes comportamentos em um agente autônomo foi criada uma estrutura hierarquia de redes neurais artificiais, onde as redes que compõem o nível de comportamentos reflexivos são do tipo diretas e as redes que compõem o nível de comportamentos reativos são do tipo recorrentes (com ciclo). Para o nível de comportamentos instintivos foi criado apenas um perceptron que tem a função de controlar a energia do agente autônomo. O nível de comportamentos reflexivos tem a função de detectar objetos, paredes e luz, assim como a função de locomover o agente autônomo. O nível de comportamentos reativos tem a função de controlar as redes do nível de comportamentos reflexivos, fazendo com que apenas um tipo de comportamento esteja ativo. A função desta hierarquia é controlar o AA, fazendo-o seguir paredes enquanto sua energia estiver boa e ir ao encontro de um ponto de energia quando sua energia estiver baixa.
Campos, Lídio Mauro Lima de. „Metáforas biológicas combinadas para projeto de redes neurais artificiais“. Florianópolis, SC, 2001. http://repositorio.ufsc.br/xmlui/handle/123456789/81976.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-19T09:55:27Z (GMT). No. of bitstreams: 0Bitstream added on 2014-09-25T21:47:29Z : No. of bitstreams: 1 181979.pdf: 13958017 bytes, checksum: b787bf0f1b3af293aec8bcef28e73189 (MD5)
A Computação Evolucionária (CE) tem sido utilizada na área de Redes Neurais Artificiais (RNAs) para evolução de três grandes constituintes: pesos das conexões, arquiteturas e regras de aprendizado. A evolução de arquiteturas possibilita o projeto automático de Redes Neurais Artificiais (RNAs), permitindo adapta-las para diferentes tarefas sem a intervenção humana. O objetivo desta pesquisa é introduzir uma metodologia a mais plausível biologicamente, que permita gerar RNAs com boa capacidade de generalizção, pequeno erro e grande tolerância a ruídos. Para isso três metáfora biológicas foram usadas: Algoritmos Genéticos, Sistemas de Lindenmayer e RNAs. Testou-se quatro classes de problemas: XOR, paridade, problema das lâmpadas e botões e as linguagens de Tomita. O método é superior em relação aos outros, pois aumenta o paralelismo implícito do algoritmo genético e pelos aspectos de plausibilidade biológica. O sistema gera arquiteturas mínimas satisfatórias que resolvem determinadas tarefas, reduzindo os custos de projeto e aumentando o desempenho das redes neurais obtidas. Finalmente sugerem-se estratégias racionais que podem fornecer uma eficiência adicional ao algoritmo genético tradicional.
Oliveira, Neilza Andréa de. „Reconhecimento de fala utilizando modelos matemáticos e redes neurais“. Florianópolis, SC, 2002. http://repositorio.ufsc.br/xmlui/handle/123456789/83292.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-19T22:35:39Z (GMT). No. of bitstreams: 1 186485.pdf: 500433 bytes, checksum: a50adf14051c6cfce1b92de8a215ebc2 (MD5)
O reconhecimento de fala tem várias áreas de aplicação: tradução de textos, ditados, interfaces de computadores, serviços automáticos por telefone e aplicações industriais de propósito gerais. A principal razão para o sucesso dos sistemas de reconhecimento tem sido demonstrada pelo aumento na produtividade propiciada por estes, que assistem ou substituem operadores humanos. Esta dissertação tem como objetivo o desenvolvimento de um sistema de reconhecimento de fala. As redes neurais artificiais surgem como o principal paradigma para o desenvolvimento destes sistemas, já que estas têm como principais características seu paralelismo, capacidade de treinamento, generalização, não linearidade e robustez.Essas vantagens são confirmadas através dos experimentos realizados neste trabalho, no qual comprova-se a importância das redes neurais artificiais para tais aplicações.
Dazzi, Rudimar Luís Scaranto. „Sistemas especialistas conexionistas :: implementação por redes diretas e bidirecionais /“. Florianópolis, SC, 1999. http://repositorio.ufsc.br/xmlui/handle/123456789/81315.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-19T01:44:44Z (GMT). No. of bitstreams: 0Bitstream added on 2016-01-09T02:17:31Z : No. of bitstreams: 1 152303.pdf: 3392152 bytes, checksum: 55289e6a86cdd622cf42736f25eb6406 (MD5)
Este trabalho apresenta a implementação de Sistemas Especialistas Conexionistas (SEC), a qual utiliza a topologia de Redes Neurais Artificiais(RNA) Diretas. Após a apresentação dos conceitos básicos de Inteligência Artificial e suas abordagens simbólica e conexionista, apresentar-se-ão os fundamentos dos SEC. A análise dos resultados do aprendizado com a inserção de novos exemplos para o treinamento das redes diretas será mostrado com o suporte de gráfico de acompanhamento, que apresenta a curva de desempenho da rede, representada pelos seguintes eixos: número de exemplos utilizados no treinamento pelo percentual de acertos obtidos nos testes. Apresenta-se, também, os resultados obtidos com a tentativa de implementação da rede BAM que, em virtude de problemas de instabilidade encontrados e demonstrados no desenvolvimento desse, tornou-se impossível obter as conclusões, bem como os testes. Por fim, faz-se uma breve análise dos resultados obtidos com o término desse trabalho, ressaltando os pontos mais significativos encontrados no decorrer de seu desenvolvimento.
Vieira, Elvis Melo. „Metodo para desenvolver agentes adaptativos em gerencia de redes usando redes neurais“. reponame:Repositório Institucional da UFSC, 1997. https://repositorio.ufsc.br/xmlui/handle/123456789/158140.
Der volle Inhalt der QuelleMade available in DSpace on 2016-01-08T21:53:54Z (GMT). No. of bitstreams: 1 108885.pdf: 3897727 bytes, checksum: 366882feb686025a48e4513acd7d1c1f (MD5) Previous issue date: 1997
Esta dissertação envolve a construção de um método para a construção e desenvolvimento orientado a objetos de agentes adaptativos para controle de objetos gerenciáveis em ambientes de gerência de redes Internet. Os agentes adaptativos resultantes são caracterizados por apresentarem as suas características adaptativas implementadas usando-se redes neurais. Neste trabalho propõe o emprego de uma metodologia orientada a objetos denominada Object Modeling Technique. São apresentados também o desenvolvimento e a implementação de um conjunto de bibliotecas de objetos que facilita o desenvolvimento de tais agentes. Além disso, é implementado um programa de prototipação e treinamento de redes neurais que possibilita o teste e projeto da rede neural que o agente adaptativo irá utilizar.
Block, Jane Mara. „Formulação de gorduras hidrogenadas atraves de redes neurais“. [s.n.], 1997. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256094.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-07-22T22:22:48Z (GMT). No. of bitstreams: 1 Block_JaneMara_D.pdf: 5700147 bytes, checksum: 719b5a0e35ae69d9f57dc4b9b9a810b9 (MD5) Previous issue date: 1997
Resumo: Na atualidade, produtos como margarinas e gorduras hidrogenadas de uso industrial são formulados utilizando-se várias bases hidrogenadas, através de uma técnica denominada de ''blending''. Para se determinar a proporção dos componentes (bases) da mistura são utilizados métodos como a programação linear, equivalentes estatísticos ou arquivos de formulas armazenadas em computador. Tais métodos estão fortemente vinculados à experiência do formulador uma vez que apresentam sérias limitações. As redes neurais ( sistemas computacionais baseados na estrutura e comportamento dos sistemas biológicos), estão sendo muito utilizadas na resolução de problemas complexos e podem ser uma poderosa ferramenta na formulação de gorduras. No presente trabalho foram construídas e treinadas, com base no perfil de sólidos do produto a formular, três redes neurais do tipo "perceptron". As redes, desenhadas para formular gorduras com 3 ingredientes (1 óleo e 2 bases hidrogenadas derivadas de soja), atuam em 3 níveis de decisão seqüenciais: técnico, disponibilidade e custos. O treinamento das redes foi realizado com 78, 63 e 112 produtos para as redes 1, 2 e 3, respectivamente. De acordo com a análise de especialistas, a Rede 1 apresentou uma eficiência de 73% na formulação de produtos realizados no treinamento. Para as Redes 2 e 3, a eficiência observada na etapa de treinamento foi de aproximadamente 1000/0. De acordo com a análise estatística, foram observadas diferenças de desempenho entre as Redes 1 e as Redes 2 e 3, sendo o pior desempenho atribuído à Rede 1. Nos testes para generalização de conhecimento, realizados com 17 produtos não utilizados na etapa de treinamento, foi observada na eficiência de aproximadamente 10001<» para as Redes 2 e 3, sendo que a análise estatística também não indicou diferença no desempenho das redes. Nos testes para verificação da amplitude de aplicação (realizado com 17 produtos comerciais), as Redes 2 e 3 obtiveram um índice de 64,1%, sendo que a análise estatística indicou desempenho melhor para a Rede 2. Em todos os testes realizados, as 3 redes forneceram respostas mais precisas nas temperaturas mais baixas (10, 20 e 25°C) e para produtos com teor de sólidos mais elevados. Para a Rede 3, foram realizados também testes de formulação de margarinas e cremes vegetais produzidos em escala piloto, com resultados similares aos produtos fabricados pela indústria de acordo com seus métodos. Os resultados obtidos demonstraram uma grande potencial de utilização das redes neurais como una alternativa aos procedimentos convencionais de formulação.
Abstract: Nowadays products such as margarine and hydrogenated fats used in industries are made using several hydrogenated bases through a technique called "blending". In order to deternrine the proportion of the components (bases) of the mixture methods such as linear programming, statistical equivalents or formula files stored in computer are used. These methods are greatly bonded to the experience of the formulator and present serious limitations. The neural networks (computer systems based on the structure and behavior of biological structures) are being used in the solving of complex problems and can be a powerful tool in formulating fats. In this work three neural networks of the "perceptron" type were built and trained based on the profile of the solids of the product to be formulated. The networks, projected to formulate fats with 3 ingredients (1 oil and 2 hydrogenated bases derived from soybean), act on three levels of sequential decisions: technical, availability and costs. The training of the networks was done with 78, 63 and 112 products for networks 1, 2 and 3, respectively. According to the analysis of specialists, network 1 showed a efficiency of 73% in the formulation of products used in the training. For network 2 and 3 the efficiency observed in the training stage was approximately 100%. According to the statistical analysis differences in performance between network 1 and 2 e 3 were observed, being the worst performance that of network 1. In the tests for generalization of knowledge, applied with 17 products not using the training stage, an efficiency of approximately 100% for network 2 and 3 was observed, being that the statistical analysis did not show a difference in performance among the networks. In the tests for verification of application amplitude (with 17 commercial products) the networks 2 and 3 resulted in a index of 64,70/0, being that, the statistical analysis indicated better performance for network 2. In all the tests the three networks offered more precise responses in lower temperatures (10, 20 e 25QC) and for products with higher solid contents. For network 3 tests for formulation of pilot scale production margarine and spreads were also done with results similar to those of products made by the industry according to its methods. The results obtained demonstrated great potential of utilization of the neural networks as an alternative to conventional formulation procedures.
Doutorado
Doutor em Tecnologia de Alimentos
Babini, Maurizio. „Reconhecimento de padrões lexicais por meio de redes neurais /“. Ilha Solteira : [s.n.], 2006. http://hdl.handle.net/11449/87226.
Der volle Inhalt der QuelleBanca: Aledir Silveira Pereira
Banca: Furio Damiani
Resumo: A compreensão da linguagem humana é uma das tarefas mais difíceis do Processamento da Linguagem Natural (PLN) e de modo mais geral da Automação e da Inteligência Artificial (IA). O objetivo desta pesquisa é estudar os mecanismos que permitem utilizar uma rede neural artificial para poder interpretar textos. Este trabalho deveria ser utilizado, futuramente, para criar uma interface em um ambiente de co-projeto, capaz de agrupar/classificar termos/conceitos, reconhecendo padrões textuais. Para alcançar nossos objetivos de pesquisa em nível de Mestrado, utilizamos o modelo semântico de Bernard Pottier, e uma Rede Neural Artificial de Kohonen. A escolha do modelo de Bernard Pottier deve-se ao fato de que este autor é um dos mais conceituados lingüistas da atualidade e que seu modelo é largamente utilizado por pesquisadores de vários paises, tendo sido, assim, comprovada a sua validade. No que diz respeito à rede de Kohonen, acreditamos que seja a mais indicada para este tipo de aplicação, tendo em vista o fato de que essa rede tenta imitar o funcionamento do cérebro humano, em particular, reproduzindo o mapeamento de suas áreas especializadas, e tendo como hipótese de partida que, no córtex humano, conceitos similares ou de áreas afins distribuem-se em áreas limítrofes. A escolha desse tipo de rede para o nosso trabalho deve-se, outrossim, ao fato de que ela utiliza um tipo de treinamento competitivo e não-supervisionado que permite organizar os vetores (dados) de entrada em agrupamentos (clusters).
Abstract: The understanding of human language is one of the most difficult tasks of Natural Language Processing (NLP), and, in general, of Automation and Artificial Intelligence (AI). The aim of our research is to study the mechanisms that allow using an artificial neural network for interpreting text. Later, our work should be used to create an interface, in a hardware/software co-design environment, capable of clustering/classifying terms/concepts, and recognizing text patterns. In order to achieve the objectives of our research, we used the semantic model of Bernard Pottier, and a Kohonen Artificial Neural Network. The choice of Bernard Pottier's model was motivated by the fact that the author is one of the most eminent linguists nowadays, and his model is largely used by researchers in many countries, thus proving the validity of his proposal. About the Kohonen net, we believe that it is the most appropriate net for this kind of application, due to the fact that this net tries to imitate the functioning of the human brain, particularly reproducing the map of its specialized areas, as well as due to the fact that this net has as initial hypothesis that, in the human cortex, similar concepts or concepts of similar areas are distributed in closed areas. Another reason for the choice of this kind of net in our study is that it uses a competitive and non-supervising training, that allows organizing entry vectors (data) in clusters.
Mestre
Pontes, Fabrício José [UNESP]. „Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos“. Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/103054.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O presente trabalho oferece contribuições à modelagem da rugosidade da peça em processos de usinagem por meio de redes neurais artificiais. Propõe-se um método para o projeto de redes. Perceptron Multi-Camada (Multi-Layer Percepton, ou MLO) e Função de Base radial Radial Basis Function, ou RBF) otimizadas para a predição da rugosidade da pela (Ra). Desenvolve-se um algoritmo que utiliza de forma hibrida a metodologia do projeto de experimentos por meio das técnicas dos fatoriais completose de Variações Evolucionária em Operações (EVOP). A estratégia adotada é a de utilizar o projeto de experimentos na busca de configurações de rede que favoreçam estatisticamente o desempenho na tarefa de predição. Parâmetro de corte dos processos de usinagem são utilizados como entradas das redes. O erro médio absoluto em porcentagem (MAE %) do decil inferioir das observações de predição para o conjunto de testes é utilizado como medida de desempnho dos modelos. Com o objetivo de validar o métido proposto são empregados casos de treinamento gerados a partir de daods obtidos de trabalhos de literatura e de experimentos de torneamento do aço ABNT 121.13. O método proposto leva á redução significativa do erro de predição da rugosidade nas operações de usinagem estudadas, quando se compara seu desempenho ao apresentado por modelos de regressão, aos resultados relatados pela literatura e ao desempenho de modelos neurais propostos por um pacotecomputacional comercial para otimização de configurações de rede. As redes projetadas segundo o método proposto possuem dispersão dos erros de predição significativamente reduzidos na comparação. Observa-se ainda que rede MLP atingem resultados estatisticamente superior aos obtidos pelas melhores redes RBF
The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Network in machining processes. Ir proposes a method for the project networks of MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) architectures optimized for prediction of Average Surface Roughness (Ru). The methid is expressed in the format of an algorithm employing two techniques from the DOE (Design of Experiments) methodology: Full factorials and Evolutionary Operations(EVOP). The strategy adopted consists in the sistematic use of DOE in a search for network configurations that benefits performance in roughess prediction. Cutting para meters from machining operations are employed as network inputs. Themean absolute error in percentage (MAE%) of the lower decile of the predictions for the test set is used as a figure of merit for network performance. In order to validate the method, data sets retrieved from literature, as well as results of experiments with AISI/SAE free-machining steel, are employed to form training and test data sets for the networks. The proposed algorithm leads to significant reduction in prediction error for surface roughness when compared to the performance delivred by a regression model, by the networks proposed by the original studies data was borrowed from and when compared models proposed by a software package intend to search automatically for optimal network configurations. In addition, networks designed acording to the proposed algorithm displayed reduced dispersion of prediction error for surface roughness when compared to the performance delivered by a regression model, by the networks proposed by the original studies data was borrowed from and when compared to neural models proposed by a software package intended to searchautomatically for optimal network configurations. In addition, networks designed according to the proposed algorith ... (Complete abstract click electronic access below)
Affonso, Carlos de Oliveira [UNESP]. „Redes neurais aplicadas em processos de usinagem da madeira“. Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/103765.
Der volle Inhalt der QuellePara se obter produtos e serviços que atendam ao nível de produtividade exigida pelo mercado, deve-se otimizar vários fatores determinantes na usinagem da madeira. O atual objetivo da pesquisa em Inteligência Artificial dedica-se ao desenvolvimento de sistemas inteligentes flexíveis e auto ajustáveis, com vistas à diminuição da presença de operadores humanos, de forma que o controle destes processos seja realizado através de sistemas computacionais. A usinagem da madeira se caracteriza pela ação de vários agentes, que de forma geral, são muito complexos para serem representados de forma analítica, adicionalmente as respostas destes sistemas são não-lineares. Portanto, estas dificuldades na modelagem do processamento da madeira justificam a utilização de redes neurais como ferramenta para melhoria de processo, e consequente agregação de valor ao produto final. O objetivo deste trabalho foi utilizar a capacidade de aprendizagem e a generalização das redes neurais e outras técnicas de inteligência computacional no processamento de madeira. A metodologia utilizada consistiu em utilizar redes neurais do tipo Multilayer Perceptrons (MLP) associadas à Lógica Fuzzy para construção de controlador do processo de usinagem da madeira. Adicionalmente as redes neurais realizaram uma classificação de imagens com relação aos defeitos superficiais da madeira. Foi utilizadas bases de dados obtidas através dos processos reais de usinagem da madeira. Os resultados obtidos foram satisfatórios, o que confirma que as redes neurais foram uma...
In order to obtain products and services to exceed the level of productivity required by the market, many machining wood factors should be optimized. The current goal of research in Artificial Intelligence is dedicated to develop intelligent flexible systems, self-adjusting, to decrease the presence of human operators. The control of these processes is done through the help of computer systems composed from software and hardware. The modern industrial processes are characterized by the action of various agents that are generally too complex to be represented analytically, additionally answers these systems are non-linear. Therefore, these difficulties in modeling wood machining process justify the use of Neural Network as a tool for process improvement and to add value to the final product. Computational Intelligence techniques such as Neuro-Fuzzy Networks have been proved applicable to this problem, since they combine the ability to learn from examples and to generalize the information learned from the neural network with the ability of Fuzzy Logic to turn variables into linguistic rules. The objective of this work is to use the learning ability and generalization of neural networks and other techniques of Artificial Intelligence in machining materials, which have solid non-linear character. The results were satisfactory, thus confirming the neural... (Complete abstract click electronic access below)
Affonso, Carlos de Oliveira. „Redes neurais aplicadas em processos de usinagem da madeira /“. Guaratinguetá, 2013. http://hdl.handle.net/11449/103765.
Der volle Inhalt der QuelleBanca: Manoel Cleber de Sampaio Alves
Banca: Maria Angelica Martins Costa
Banca: Raquel Gonçalves
Banca: Ivaldo de Domenico Valarelli
Resumo: Para se obter produtos e serviços que atendam ao nível de produtividade exigida pelo mercado, deve-se otimizar vários fatores determinantes na usinagem da madeira. O atual objetivo da pesquisa em Inteligência Artificial dedica-se ao desenvolvimento de sistemas inteligentes flexíveis e auto ajustáveis, com vistas à diminuição da presença de operadores humanos, de forma que o controle destes processos seja realizado através de sistemas computacionais. A usinagem da madeira se caracteriza pela ação de vários agentes, que de forma geral, são muito complexos para serem representados de forma analítica, adicionalmente as respostas destes sistemas são não-lineares. Portanto, estas dificuldades na modelagem do processamento da madeira justificam a utilização de redes neurais como ferramenta para melhoria de processo, e consequente agregação de valor ao produto final. O objetivo deste trabalho foi utilizar a capacidade de aprendizagem e a generalização das redes neurais e outras técnicas de inteligência computacional no processamento de madeira. A metodologia utilizada consistiu em utilizar redes neurais do tipo Multilayer Perceptrons (MLP) associadas à Lógica Fuzzy para construção de controlador do processo de usinagem da madeira. Adicionalmente as redes neurais realizaram uma classificação de imagens com relação aos defeitos superficiais da madeira. Foi utilizadas bases de dados obtidas através dos processos reais de usinagem da madeira. Os resultados obtidos foram satisfatórios, o que confirma que as redes neurais foram uma... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: In order to obtain products and services to exceed the level of productivity required by the market, many machining wood factors should be optimized. The current goal of research in Artificial Intelligence is dedicated to develop intelligent flexible systems, self-adjusting, to decrease the presence of human operators. The control of these processes is done through the help of computer systems composed from software and hardware. The modern industrial processes are characterized by the action of various agents that are generally too complex to be represented analytically, additionally answers these systems are non-linear. Therefore, these difficulties in modeling wood machining process justify the use of Neural Network as a tool for process improvement and to add value to the final product. Computational Intelligence techniques such as Neuro-Fuzzy Networks have been proved applicable to this problem, since they combine the ability to learn from examples and to generalize the information learned from the neural network with the ability of Fuzzy Logic to turn variables into linguistic rules. The objective of this work is to use the learning ability and generalization of neural networks and other techniques of Artificial Intelligence in machining materials, which have solid non-linear character. The results were satisfactory, thus confirming the neural... (Complete abstract click electronic access below)
Doutor
Almeida, Luis Fernando de. „Redes neurais artificiais aplicadas à manutenção baseada na condição /“. Guaratinguetá : [s.n.], 2011. http://hdl.handle.net/11449/105346.
Der volle Inhalt der QuelleBanca: Alvaro Manoel Souza Soares
Banca: José Elias Tomazini
Banca: Francisco Carlos Parquet Bizarria
Banca: Carlos Henrique Netto Lahoz
Resumo: Um importante aspecto no processo produtivo é proporcionar o funcionamento das máquinas o maior tempo possível sem o comprometimento na qualidade final do produto. Nesse sentido, a utilização de uma política de manutenção adequada se torna necessária para o monitoramento do desgaste dos componentes das máquinas a fim de aumentar o tempo de sua utilização sem comprometer a qualidade do produto. A manutenção baseada em condição se apresenta como a abordagem mais apropriada para esse controle. Dentre as diversas abordagens utilizadas para o desenvolvimento de programas para esse tipo de manutenção, as técnicas baseadas em Inteligência Artificial vêm se destacando no que diz respeito ao seu desempenho. Diante desse contexto, essa tese propõe uma Rede Neural Artificial, a qual, devidamente parametrizada, possibilita sua aplicação tanto para análise de vibrações quanto análise de partículas de desgaste. Para tanto, foi implementado um protótipo denominado NEURALNET-CBM, subdividido em dois módulos, Vibrações e Partículas. Os resultados dos testes mostram a efetividade da rede proposta, com um índice de acerto acima de 90% na classificação e identificação de defeitos e partículas de desgaste.
Abstract: An important aspect in the production process is to ensure the operability of a machine as long as possible without interfering on the final quality product. In this way, the use of a suitable maintenance policy is critical for monitoring the wear of the machine components in order to increase your useful life without any compromise of the product quality. The Condition-Based Maintenance is presented as the most appropriate approach for this control. Among several methods used to develop systems for this type of maintenance, techniques Artificial Intelligence has been standing out in relation their performance. Therefore, this thesis proposes a Artificial Neural Network, which, properly parameterized, it makes possible its application for both vibration and wear particle analysis. For this, we implemented a prototype named NEURALNET-CBM, divided into two modules: Vibration and Particle. The test results show the effectiveness of the proposed network, with accuracy rate greater than 90% in classifying and identification of defects and wear particles.
Doutor
Schaeffer, Carlos Adriani Lara. „Sistema de detecção de intrusão baseado em redes neurais“. Florianópolis, SC, 2003. http://repositorio.ufsc.br/xmlui/handle/123456789/85652.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-20T21:11:24Z (GMT). No. of bitstreams: 1 199821.pdf: 993597 bytes, checksum: b48c44f5ec032c55af301e071fb8a5a4 (MD5)
Este trabalho apresenta um estudo de problemas relacionados com segurança de informações em redes de computadores. São apresentadas algumas técnicas utilizadas para tentar garantir a segurança das informações em um ambiente de redes de computadores, como ferramentas de criptografia, Firewall e Sistemas de Detecção de Intrusão(IDS), apresentados alguns conceitos importantes na área de segurança da informação, alguns ataques conhecidos e algumas medidas preventivas. São descritos e classificados vários modelos de Sistemas de Detecção de Intrusão em redes de computadores. É feito um estudo de Redes Neurais Artificiais que será utilizada para avaliação de padrões de comportamento e detecção de padrões intrusivos. É feita a escolha de um modelo para análise e testes em um laboratório real utilizados por um grupo de professores da Universidade de Passo Fundo. A partir do uso desta rede, são criados padrões de comportamento e coletados registros de comandos executados por estes usuários a fim de verificar a existência de padrões de comportamento suspeito com o apoio de uma rede neural artificial. Para finalizar, é apresentada uma avaliação da análise feita por esta rede neural, relatando a fase de treinamento e alimentação desta rede e os resultados obtidos.
Rosa, João Luis Garcia. „Redes neurais e logica formal em processamento de linguagem natural“. [s.n.], 1993. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259553.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica
Made available in DSpace on 2018-07-18T14:25:22Z (GMT). No. of bitstreams: 1 Rosa_JoaoLuisGarcia_M.pdf: 10533866 bytes, checksum: eff7483f9919f4d2a0a8d1da0a8ad44d (MD5) Previous issue date: 1993
Resumo: Esta dissertação de mestrado é sobre Processamento de Linguagem Natural (PLN). O PLN consiste de uma série de tarefas que a máquina deve executar para analisar um texto. Na literatura existem vários trabalhos em diversas abordagens. Este trabalho faz uma combinação de abordagens baseadas em lógica e de abordagens conexionistas. O trabalho proposto tem três partes. A primeira parte faz a análise sintática de frases da língua portuguesa. É baseada em lógica. A segunda parte faz a análise semântica, ou a verificação do significado das palavras numa frase. Isto é feito através de redes neurais artificiais, que "aprendem" a representação binária das palavras (suas microcaracterísticas semânticas). Esta abordagem é chamada de conexionismo. Sua grande vantagem é a habilidade de generalização, ou seja, a rede é capaz de reconhecer uma palavra, mesmo que esta não tenha sido mostrada a ela. A terceira, e última, parte deste trabalho trata da utilização de redes recorrentes para análise de frases. Este tipo de rede serve para "ligar" as palavras em uma frase, pois a rede recorrente tem memória. Ela é capaz de "lembrar" da última palavra vista numa seqüência. É útil para ligar as palavras em uma sentença, por exemplo, o sujeito com o objeto, o objeto com o complemento, etc. Isto torna a frase uma entidade única a ser analisada
Abstract: This dissertation is about Natural Language Processing (NLP). NLP consists of a series of tasks the machine should carry out in analysing a texto In literature, there are papers having different approaches. This work combines two approaches: based on logic and connectionism. The proposed work is divided in three parts. The first makes the parsing, or the syntactic analysis of sentences in the Portuguese language, based on logic. The second part takes care of the semantic analysis, or the verification of the meaning of words in a sentence. This is achieved through artificial neural networks that "Iearn" the binary representation of the words (their semantic microfeatures). This approach is called connectionism. Its major advantage is the ability of generalizing, i. e., it is able to recognize a word even it is not presented to the nets. The third, and last, part of this work is about the use of recurrent networks in text analysis. This kind of network is to "Iink" the words in a sentence because the recurrent net is given memory, which makes it able to "remember" the last word seen in a sequence. This is useful to link the words in a sentence like the subject to the object, the object to the complement, etc. This makes a sentence an entire item to be analysed.
Mestrado
Mestre em Engenharia Elétrica
Curi, Leonardo Zago. „Aplicação de redes neurais na precificação de debêntures“. reponame:Repositório Institucional do FGV, 2008. http://hdl.handle.net/10438/2046.
Der volle Inhalt der QuellePrevious studies on pricing of Corporate Bonds have shown that prices for these securities in Brazil cannot be explained only by credit risk, but also by other factors, such as liquidity risk. On the other hand, other studies also have shown that neural networks models have been more successful than traditional models in explaining issues related to corporate bonds, such as modeling default probabilities and ratings from agencies such as Standard & Poors and Moodys. The purpose of this study is to test neural networks technique in pricing corporate bonds in Brasil and compare the results obtained with the ones obtained through linear regressions. To accomplish this, accounting variables and specific features of a bond such as time to maturity and calllable features were used as independent variables. Regarding dependent variables, ANDIMA’s daily rates were used as a reference for market value for corporate bonds. The variables described above were tested in several models through ordinary least squares and the model which presented the best result was also tested in neural networks with two hidden layers. The neural networks with six and eight neurons presented better results than models estimated through pooling and ordinary least squares both in the training stage as in the testing one. Nonetheless, there’s still much room for improvement in the models considering the size of the database available is still small and the rates published by ANDIMA are averages of a small group of financial institutions and may not reflect the true market value of a corporate bond.
Estudos anteriores mostraram que a técnica de redes neurais tem sido mais bem sucedida que os modelos tradicionais em vários assuntos relacionados ao mercado de debêntures, tais como modelar a probabilidade de default e em explicar os ratings de agências classificadoras de risco, como Standard & Poors e Moodys. O objetivo deste trabalho é testar a técnica de redes neurais para precificar debêntures no Brasil e comparar os resultados obtidos com regressões lineares. Para isso, utilizaram-se como variáveis explicativas dados contábeis, características específicas das emissões, tais como prazo para vencimento e cláusulas de recompra antecipada. Em relação às variáveis dependentes, optou-se por utilizar as taxas divulgadas diariamente pela ANDIMA como valor de mercado para as debêntures. As variáveis acima foram testadas em diversos modelos pelo método dos mínimos quadrados ordinários e o modelo que apresentou o melhor resultado foi testado em redes neurais com duas camadas intermediárias. Os resultados obtidos com redes neurais com seis e oito neurônios apresentaram resultados superiores aos modelos estimados por mínimos quadrados ordinários tanto na fase de treinamento como na fase de testes. No entanto, ainda há bastante espaço para melhorias nos modelos dado que o tamanho da base de dados disponível para este tipo de testes no Brasil ainda não é a ideal e as taxas divulgadas pela ANDIMA são médias de um grupo pequeno de instituições e não necessariamente refletem o valor de mercado de uma debênture.
Palma, Neto Luiz Garcia. „Redes neurais construtivas para a classificação de padrões“. Universidade Federal de São Carlos, 2004. https://repositorio.ufscar.br/handle/ufscar/311.
Der volle Inhalt der QuelleUniversidade Federal de Sao Carlos
Constructive neural learning is a neural learning model that does not assume a fixed topology before training begins. The main characteristic of this learning model is the dynamic construction of the network hidden layers which occurs simultaneously with training. This research work investigates six constructive neural algorithms namely, tower, pyramid, tiling, upstart, Distal and cascade-correlation, evaluating each of them with relation to advantages and disadvantages, ease of training, size and topology of the network, restrictions and performance. The work presents a computational system (CONEB) which implements each algorithm. Results obtained by using the different algorithms in several knowledge domains are presented and analysed.
Aprendizado Neural Construtivo é um modelo de aprendizado neural que não pressupõe a definição de uma topologia de rede fixa antes do início do treinamento. A principal característica deste modelo de aprendizado é a construção dinâmica das camadas intermediárias da rede, à medida que vão sendo necessárias ao seu treinamento. Este trabalho de pesquisa investiga seis algoritmos neurais construtivos, a saber, tower, pyramid, tiling, upstart, Distal e cascade-correlation, buscando avaliar cada um deles com relação a vantagens e desvantagens, facilidade no treinamento, tamanho e topologia de rede criada, restrições de uso e desempenho. O trabalho apresenta um ambiente computacional (CONEB) que disponibiliza a implementação de cada um dos algoritmos. São apresentados e analisados os resultados obtidos utilizando os diferentes algoritmos em vários domínios de conhecimento.
Zampronio, Cleidiane Gorete. „Determinação simultanea de acidos fracos, em analise por injeção em fluxo, empregando calibração multivariada não linear, por treinamento de redes neurais artificiais“. [s.n.], 1998. http://repositorio.unicamp.br/jspui/handle/REPOSIP/249334.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica
Made available in DSpace on 2018-07-24T07:31:02Z (GMT). No. of bitstreams: 1 Zampronio_CleidianeGorete_M.pdf: 3101970 bytes, checksum: 40db814d08064f0296258583366dd1ae (MD5) Previous issue date: 1998
Mestrado
Iyoda, Eduardo Masato. „Inteligencia computacional no projeto automatico de redes neurais hibridas e redes neurofuzzy heterogeneas“. [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259071.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-12T00:43:17Z (GMT). No. of bitstreams: 1 Iyoda_EduardoMasato_M.pdf: 15416989 bytes, checksum: 11aa55a6d43148430b0475e3eb7e8fc0 (MD5) Previous issue date: 2000
Resumo: Esta tese apresenta um estudo a respeito de possíveis interações entre os principais paradigmas que compõem a área de inteligência computacional: redes neurais artificiais, sistemas fuzzy e computação evolutiva. Como principais contribuições, são propostas duas novas estratégias de solução de problemas de engenharia: as redes neurais híbridas e as redes neurofuzzy heterogêneas. A rede neural híbrida corresponde a uma extensão dos modelos de aproximação por busca de projeção, onde são consideradas também composições multiplicativas das funções de ativação dos neurônios escondidos. A arquitetura neurofuzzy heterogênea, diferentemente das arquiteturas neurofuzzy tradicionais, utiliza neurônios lógicos que podem ter pares distintos de normas triangulares. Os resultados de simulações computacionais mostram que os dois novos modelos propostos são bastante promissores, no sentido de que eles são capazes de fornecer soluções de melhor qualidade do que os modelos convencionais
Abstract: This thesis presents a study on possible combinations of the main paradigms that compose the field of computational intelligence: artificial neural networks, fuzzy systems and evolutionary computation. Among other contributions, two new engineering problem-solving strategies are proposed: hybrid neural networks and heterogeneous neurofuzzy networks. Hybrid neural networks correspond to an extension of project pursuit learning models, where multiplicative compositions of the hidden neurons' activation functions are also considered. Differently from traditional neurofuzzy architectures, heterogeneous neurofuzzy networks employ logical neurons that may have distinct pairs of triangular norms. Simulation results show that these new proposed models are very promising, in the sense that they are capable of providing higher quality solutions than traditional models
Mestrado
Mestre em Engenharia Elétrica
Aguiar, Helena Cristina I. L. „Modelagem de digestores Kraft continuo : redes neurais e modelo hibrido“. [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267588.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas. Faculdade de Engenharia Quimica
Made available in DSpace on 2018-07-26T21:05:08Z (GMT). No. of bitstreams: 1 Aguiar_HelenaCristinaI.L_M.pdf: 4620932 bytes, checksum: 599c90f6c71f6effafd2b6b0e96021e6 (MD5) Previous issue date: 2000
Resumo: Estudos demonstram que a expectativa de crescimento do consumo de papel e baixo custo de produção no Brasil pode tornar a indústria de celulose e papel do país a maior geradora de negócios neste ramo internacionalmente. O processo de produção de celulose é complexo, e apesar de muito estudado ainda há muitas lacunas que precisam ser preenchidas. Por outro lado, as redes neurais são uma solução para a modelagem de processos cujo conhecimento é incompleto ou cuja complexidade dificulta a produção de bons resultados através da modelagem determinística. O objetivo principal desta tese foi a criação de um modelo para a predição do grau de polpação da madeira a partir de dados industriais, utilizando técnicas de modelagem diferentes. O trabalho explorou principalmente a modelagem através de redes neurais, mas também se dedicou à aplicação dos dados industriais a um modelo determinístico e a sua posterior combinação com uma rede neural para o desenvolvimento de um modelo híbrido. A discussão sobre os recursos necessários para a utilização de cada técnica, bem como a comparação entre as diferentes metodologias, suas vantagens e desvantagens, também são assuntos deste trabalho. A Aracruz Celulose SA, a maior fábrica do Brasil, cedeu os dados para o desenvolvimento do modelo. A avaliação de vários modelos encontrados na literatura selecionou o modelo determinístico a ser utilizado. O modelo neural apresenta uma rede "feedforward" treinada com o algoritmo de retropropagação. Inicialmente, os dados industriais foram avaliados e apenas aqueles que mostraram trazer informação relevante foram utilizados. A estrutura e parâmetros da rede foram otirnizados de modo a melhorar a performance do modelo. A combinação do resultado do modelo determinístico com o modelo neural formaram o modelo híbrido. A fábrica não pode ceder o esperado número de conjuntos de dados para o treinamento da rede neural. No entanto, a qualidade dos dados e o rigor com que foram obtidos, conjuntamente com um cuidadoso trabalho de seleção desses dados possibilitaram a busca de soluções para o sucesso do modelo. A alternativa encontrada foi a criação de um novo conjunto de dados, obtidos através de uma curva de correlação dos dados industriais. Apesar do pequeno conjunto de treinamento, a rede neural produziu resultados satisfatórios, onde o erro entre os valores esperados e preditos foram menores que o erro experimental para a determinação de lignina remanescente. O modelo determinístico foi capaz de reproduzir a taxa de deslignificação da celulose no tempo, o que determina o grau de polpação, e portanto foi considerado adequado para a utilização no modelo híbrido. A rede híbrida gerou resultados um pouco melhores que a rede pura, e seu treinamento foi significativamente mais rápido. Um modelo de computação rápida e que reproduza os resultados esperados pode ser implementado em um sistema supervisor ou de controle para funcionar "on-line". Os resultados apresentados mostram que tanto as redes neurais puras quanto os modelos luoridos, quando bem treinados e otimizados, atendem a esses requisitos. Mostram também que é possfvel utilizar variáveis normais de processo, tomando mais viável o desenvolvimento de modelos específicos
Abstract: Studies show that the expected growth of paper consumption and low production cost in Brazil may turn its pulp and paper industry into the greatest business generator in this field worldwide. The process to produce pulp is complex, and although it has been extensively researched, there are still many questions to be answered. On the other hand, neural networks may be the solution for processes whose knowledge is incomplete or whose complexity makes it harder to obtain good results with first principIe models. The main goal of this thesis was the development of a model to predict pulping degree using industrial data, with different modeling techniques. It explored mainly neural networks technique, but also did it apply the data into a first principIe model, which was later used for the development of a hybrid mode!. The discussion about the resources required for each technique, as well as the different methods, their advantages and limitations, is part of this work. Aracruz Celulose SA, the largest mill in Brazil, provided the data for the model development. The evaluation of published models set the criteria for the selection of the deterministic model to be used. The neural model presents a feedforward network trained with backpropagation algorithm. After an evaluation of the industrial data, only the variables that showed to carry relevant information were used. The network structure and its parameters were optimized in order to improve model performance. The combination of the result obtained from the deterministic model with a neural network composed the hybrid model. The mill could not provide the expected amount of training data. However, the quality of the data and the rigorous data collection procedure, as well as the careful data evaluation made it possible to search for solutions for a successful model. The alternative was the production of a new data set formed with points of the correlation curve obtained from industrial data. The difference between the expected and predicted values was lower than the experimental error inherent to the lab test for determination of remaining lignin. The fIrst principIe model was able to reproduce delignification rate, which determines the pulping degree, and therefore was considered adequate to be used in the hybrid model. The hybrid network results were slightly better than the ones obtained with the pure net and its training was appreciably faster. A model which is able to reproduce expected results in a timely fashion can be implemented in a control or supervisory system that works on-line. The results showed that when well trained and optimized, both, the pure nets and the hybrid models, fulfill these requirements. They also show that it is possible to use normal process variables, making it more feasible to develop customized models
Mestrado
Desenvolvimento de Processos Químicos
Mestre em Engenharia Química
Malfatti, Guilherme Meneguzzi. „Técnicas de agrupamento de dados para computação aproximativa“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/169096.
Der volle Inhalt der QuelleTwo of the major drivers of increased performance in single-thread applications - increase in operation frequency and exploitation of instruction-level parallelism - have had little advances in the last years due to power constraints. In this context, considering the intrinsic imprecision-tolerance (i.e., outputs may present an acceptable level of noise without compromising the result) of many modern applications, such as image processing and machine learning, approximate computation becomes a promising approach. This technique is based on computing approximate instead of accurate results, which can increase performance and reduce energy consumption at the cost of quality. In the current state of the art, the most common way of exploiting the technique is through neural networks (more specifically, the Multilayer Perceptron model), due to the ability of these structures to learn arbitrary functions and to approximate them. Such networks are usually implemented in a dedicated neural accelerator. However, this implementation requires a large amount of chip area and usually does not offer enough improvements to justify this additional cost. The goal of this work is to propose a new mechanism to address approximate computation, based on approximate reuse of functions and code fragments. This technique automatically groups input and output data by similarity and stores this information in a sofware-controlled memory. Based on these data, the quantized values can be reused through a search to this table, in which the most appropriate output will be selected and, therefore, execution of the original code will be replaced. Applying this technique is effective, achieving an average 97.1% reduction in Energy-Delay-Product (EDP) when compared to neural accelerators.
Almeida, Luis Fernando de [UNESP]. „Redes neurais artificiais aplicadas à manutenção baseada na condição“. Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/105346.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Um importante aspecto no processo produtivo é proporcionar o funcionamento das máquinas o maior tempo possível sem o comprometimento na qualidade final do produto. Nesse sentido, a utilização de uma política de manutenção adequada se torna necessária para o monitoramento do desgaste dos componentes das máquinas a fim de aumentar o tempo de sua utilização sem comprometer a qualidade do produto. A manutenção baseada em condição se apresenta como a abordagem mais apropriada para esse controle. Dentre as diversas abordagens utilizadas para o desenvolvimento de programas para esse tipo de manutenção, as técnicas baseadas em Inteligência Artificial vêm se destacando no que diz respeito ao seu desempenho. Diante desse contexto, essa tese propõe uma Rede Neural Artificial, a qual, devidamente parametrizada, possibilita sua aplicação tanto para análise de vibrações quanto análise de partículas de desgaste. Para tanto, foi implementado um protótipo denominado NEURALNET-CBM, subdividido em dois módulos, Vibrações e Partículas. Os resultados dos testes mostram a efetividade da rede proposta, com um índice de acerto acima de 90% na classificação e identificação de defeitos e partículas de desgaste.
An important aspect in the production process is to ensure the operability of a machine as long as possible without interfering on the final quality product. In this way, the use of a suitable maintenance policy is critical for monitoring the wear of the machine components in order to increase your useful life without any compromise of the product quality. The Condition-Based Maintenance is presented as the most appropriate approach for this control. Among several methods used to develop systems for this type of maintenance, techniques Artificial Intelligence has been standing out in relation their performance. Therefore, this thesis proposes a Artificial Neural Network, which, properly parameterized, it makes possible its application for both vibration and wear particle analysis. For this, we implemented a prototype named NEURALNET-CBM, divided into two modules: Vibration and Particle. The test results show the effectiveness of the proposed network, with accuracy rate greater than 90% in classifying and identification of defects and wear particles.
Gozer, Isabel Cristina. „Redes neurais artificiais e máquinas de vetores suporte“. reponame:Repositório Institucional da UFSC, 2012. https://repositorio.ufsc.br/xmlui/handle/123456789/158361.
Der volle Inhalt der QuelleMade available in DSpace on 2016-01-15T14:31:22Z (GMT). No. of bitstreams: 1 318899.pdf: 1604655 bytes, checksum: 691cb832dc0af84cb9324823c4cc71f0 (MD5) Previous issue date: 2012
A presente tese teve como objetivo a avaliação de insolvência do cooperativismo de crédito mútuo do Estado do Paraná através da utilização de duas técnicas de data mining, redes neurais artificiais (RNAs) e máquinas de vetores suporte (SVMs), a proposta foi, por meio do aprendizado de máquina, a de criar um modelo de capaz de avaliar a solvência das cooperativas de crédito, para tanto foram utilizados os indicadores do sistema PEARLS, indicadores esses recomendados internacionalmente pelo WOCCU (Word Council of Credit Unions) como os melhores para a avaliação do cooperativismo de crédito mútuo. Para a realização do estudo foram utilizadas as demonstrações financeiras das 31 cooperativas de crédito mútuo do estado do Paraná no ano de 2010, divulgadas pelo Banco Central do Brasil (BACEN) como solventes e como insolventes as cooperativas que deixaram de enviar suas demonstrações para o Banco Central, o que caracteriza a descontinuidade operacional de fato, isso num período de 10 anos, que totalizou 31 cooperativas de crédito. Os algoritmos de redes neurais utilizados neste trabalho foram RBFNetwork, MultilayerPerceptron e MultilayerPerceptronCS; e o algoritmo escolhido de Support Vector Machine foi o LibSVM, todos pertencentes ao pacote de software Weka, ferramenta bastante utilizada em Data Mining e Aprendizado de Máquina. Ao analisar os resultados das RNAs e da SVM ficou evidente a superioridade das SVMs como classificador binário de avaliação de solvência, pois o seu algoritmo LibSVMs apresentou os melhores resultados em todas as avaliações de desempenho propostas nesta pesquisa, destacando a avaliação de desempenho denominada de F-Measure, que evidenciou que o algoritmo LibSVMs foi melhor também nos três grupos de indicadores. O único indicador de desempenho em que LibSVM teve desempenho inferior às RNAs foi na taxa de erro da classe negativa, verifica-se a RNA com os algoritmos MultilayerPerceptron e MultilayerPerceptron; que possuem melhores índices para 27, 10 e 11 indicadores, já o algoritmo da LibSVMs possui desempenho igual para 10 e 11 indicadores. Observando o gráfico Receiver Operating Characteristic (ROC), é possível perceber que os algoritmos de redes neurais apresentaram as maiores TP Rate e FP Rate, resultando em modelos liberais, enquanto o algoritmo LibSVM resultou em modelos conservadores e teve bom resultado em relação à FP Rate, mas poucas taxas altas de TP Rate. O desempenho apresentado pelas Redes Neurais MultilayerPerceptron, MultilayerPerceptronCS e RBFNetwork, na classificação dos exemplos, foi inferior ao LibSVM. O melhor resultado alcançado pelos algoritmos está nas tabelas (indicadores de desempenho). Ainda que fosse utilizado apenas um algoritmo de rede neural, o desempenho ainda seria melhor na probabilidade de classificação de um novo exemplo como verdadeiro positivo (INSOLVENTE), bastando observar isoladamente as curvas de desempenho no gráfico ROC. Em relação ao número de indicadores do Sistema PEARLS para a avaliação da Solvência do Cooperativismo de crédito, foi confirmado também que não há a necessidade de calcular os 39 indicadores iniciais, bem como a planilha com os 27 indicadores, porém somente os 10 sugeridos pelos analistas de mercado são suficientes para tal avaliação.
Abstract : This work aims at assessing the insolvency of mutual credit unions in the Parana State (Brazil) by two different data mining techniques: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). The proposal is to create a model that can evaluate the solvency of credit unions from the Machine Learning, and for this, PEARLS System indicators were selected since they are internationally recommended by WOCCU (Word Council of Credit Unions) as the most suitable for the evaluation of mutual credit cooperatives. The study used financial statements of 31 credit unions, either solvent or insolvent, disclosed by Central Bank of Brazil (BACEN) in 2010, for the State of Paraná. The insolvent cooperatives are those which stopped sending statements to the Central Bank, which in fact characterizes the operational discontinuity. This study considered a 10-year period, totaling 31 credit unions. The algorithms used in this work were RBFNetwork, MultilayerPerceptron and MultilayerPerceptronCS for Artificial Neural Networks and LibSVM for Support Vector Machine, all composing the Weka software, which is widely used in Data Mining and Machine Learning. The results of ANN and SVM showed the superiority of SVM for the binary classification of solvency evaluation. Its algorithm LibSVMs showed the best results in all performance evaluations proposed in this research, mainly by the F-Measure, which indicates that this algorithm was the best across the three groups of indicators. However, with respect to the rate of error of the negative class, the LibSVM showed lower performance than those ANNs, where the MultilayerPerceptron and MultilayerPerceptron algorithms had better indices for 27, 10 and 11 indicators in comparison with the LibSVM that achieved the same performance for 10 and 11 indicators. The Receiver Operating Characteristic (ROC) graph demonstrates that the neural network algorithms had the highest TP Rate and FP Rate, resulting in liberal models, while the LibSVM algorithm resulted in conservative models with good result for FP Rate but few high rates for TP Rate. The performance of classification of samples shown by the MultilayerPerceptron, MultilayerPerceptronCS and RBFNetwork Neural Networks was lower than the LibSVM. The best results achieved by algorithms are presented in the tables (performance indicators). The individual observation of each curve in the ROC graph suggests that even using only one neural network algorithm, the performance would still be better in the probability of classifying a new example as "true positive" (INSOLVENT). With respect to the number of PEARL System indicators recommended to assess the solvency of credit unions, this study demonstrated that there is no need to calculate all those 39 initial indicators or that spreadsheet with 27 adapted indicators. Only those 10 suggested by the market analysts were sufficient for the purpose of this study.
Soares, Sérgio Aurélio Ferreira. „Spatial interpolation and geostatistic simulation with the incremental Gaussian mixture network“. reponame:Repositório Institucional da UFSC, 2016. https://repositorio.ufsc.br/xmlui/handle/123456789/178581.
Der volle Inhalt der QuelleMade available in DSpace on 2017-08-22T04:22:16Z (GMT). No. of bitstreams: 1 347911.pdf: 1690914 bytes, checksum: e43f9150ef3cb130f6d5696b46a68fa5 (MD5) Previous issue date: 2016
Abstract : Geostatistics aggregates a set of tools designed to deal with spatially correlated data. Two significant problems that Geostatistics tackles are the spatial interpolation and geostatistical simulation. Kriging and Sequential Gaussian Simulation (SGS) are two examples of traditional geostatistical tools used for these kinds of problems. These methods perform well when the provided Variogram is well modeled. The problem is that modeling the Variogram requires expert knowledge and a certain familiarity with the dataset. This complexity might make Geostatistics tools the last choice of a non-expert. On the other hand, an important feature present in neural networks is their ability to learn from data, even when the user does not have much information about the particular dataset. However, traditional models, such as Multilayer Perceptron (MLP), do not perform well in spatial interpolation problems due to their difficulty in accurately modeling the spatial correlation between samples. With this motivation in mind, we adapted the Incremental Gaussian Mixture Network (IGMN) model for spatial interpolation and geostatistical simulation applications. The three most important contributions of this work are: 1. An improvement in the IGMN estimation process for spatial interpolation problems with sparse datasets; 2. An algorithm to perform Sequential Gaussian Simulation using IGMN instead of Kriging; 3. An algorithm that mixes the Direct Sampling (DS) method and IGMN for cluster-based Multiple Point Simulation (MPS) with training images. Results show that our approach outperforms MLP and the original IGMN in spatial interpolation problems, especially in anisotropic and sparse datasets (in terms of RMSE and CC). Also, our algorithm for sequential simulation using IGMN instead of Kriging can generate equally probable realizations of the defined simulation grid for unconditioned simulations. Finally, our algorithm that mixes the DS method and IGMN can produce better quality simulations and runs much faster than the original DS. To the best of our knowledge, this is the first time a Neural Network model is specialized for spatial interpolation applications and can perform a geostatistical simulation.
A Geoestatística agrega um conjunto de ferramentas especializadas em dados espacialmente correlacionados. Dois problemas importantes na Geoestatística são a interpolação espacial e a simulação. A Krigagem e a Simulação Sequencial Gaussiana (SGS) são dois exemplos de ferramentas geoestatísticas utilizadas para esses tipos de problemas, respectivamente. A Krigagem e a SGS possuem bom desempenho quando o Variograma fornecido pelo usuário representa bem as correlações espaciais. O problema é que a modelagem do Variograma requer um conhecimento especializado e certa familiaridade com o conjunto de dados em estudo. Essa complexidade pode tornar difícíl a popularização dessas técnicas entre não-especialistas. Por outro lado, uma característica importante presente em Redes Neurais Artificiais é a capacidade de aprender a partir dos dados, mesmo quando o usuário não possui familiaridade com os dados. No entanto, os modelos tradicionais, como o Multilayer Perceptron (MLP), têm dificuldade em identificar a correlação espacial entre amostras e não apresentam um bom desempenho em problemas de interpolação espacial. Com essa motivação, nós adaptamos e aplicamos a Incremental Gaussian Mixture Network (IGMN) em problemas de interpolação espacial e simulação geoestatística. As três principais contribuições deste trabalho são: 1. Melhoria no processo de estimação da IGMN para problemas de interpolação espacial; 2. Um algoritmo para realizar simulação sequencial gaussiana utilizando a IGMN como interpolador; 3. Um algoritmo que mistura o método Direct Sampling (DS) e a IGMN para realizar simulação multiponto (MPS) a partir de imagens de treinamento. Os resultados mostram que a nossa abordagem é mais precisa que o MLP e a IGMN original em problemas de interpolação espacial, especialmente em conjuntos de dados esparsos e com anisotropia (em termos de RMSE e CC). Nosso algoritmo de simulação sequencial que utiliza a IGMN como interpolador é capaz de gerar simulações não condicionadas que respeitam características do conjunto original de dados. Finalmente, nosso algoritmo de simulação multiponto, que mistura o método DS e a IGMN, é capaz de realizar simulações condicionadas e produz realizações com qualidade superior num tempo de execução inferior ao do DS. Até onde sabemos, esta a primeira vez que um modelo de rede neural é especializado para aplicações de interpolação espacial e é capaz de realizar simulação geostatística.
Spaeth, Francisco. „Modelo para previsão de vazão fluvial baseado em wavelets e redes neurais“. Florianópolis, SC, 2008. http://repositorio.ufsc.br/xmlui/handle/123456789/92019.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-24T04:54:11Z (GMT). No. of bitstreams: 1 252385.pdf: 5217834 bytes, checksum: 1e4b5b42b072de961cc5882ecc5c346d (MD5)
O presente trabalho apresenta um modelo híbrido wavelet/redes neurais, onde é empregada a análise wavelet como préprocessamento para a rede neural. Desta forma a análise desempenhará papel de extrator de características. Baseado nas características extraídas, a rede neural artificial efetua a aproximação de função com o intuito de retornar valores de previsão da série temporal desejada. Como validador para o modelo é utilizada a série temporal da vazão do Rio Itajaí Açu. Para a escolha da wavelet, a ser aplicado na quantização do modelo, são elencadas vinte candidatas (haar, db3, db5, db7, db10, db15, db20, coif1, coif2, coif3, coif4, coif5, sym3, sym5, sym7, sym10, sym15, sym20, chroma4 e chroma6). Testes repetitivos são efetuados tirando índices de erro para selecionar a melhor candidata. Baseado sob a wavelet selecionada para a resolução do problema de previsão é feito uma análise de combinações de anela/sobreposição para averiguar o comportamento do modelo utilizando diferentes parâmetros. Como resultado, obtiveramse índices de acertos relativamente parecidos utilizando uma quantidade de dados de inferência menor, devido característica de transformação das wavelets. Em outros casos é constatado um ganho computacional, o que é discutido separando o processo em quatro etapas distintas e simulando várias configurações para um mesmo exemplo. The present work presents a hybrid model wavelet/neural networks, which is employed wavelet analysis as a preprocessing work for the artificial neural network. This preprocessing activity will cast as a feature extraction. In these features extracted the neural network makes the approximation with the aim of returning values of the time series forecasting desired. To validate the model is used the Itajaí Açu river#s flow history. Regarding the avelet#s choice, twenty candidates were enrolled in order to be applied in the quantization of the model, as follows: haar, db3, db5, db7, db10, db15, db20, coif1, coif2, coif3, coif4, coif5, sym3, sym5, sym7, sym10, sym15, ym20, chroma4 and chroma6. Repetitive tests are performed to extract error rates for selecting the best candidate. Based on the selected wavelet to solve the problem of forecasting time series, an analysis is made using a combination of window size/overlap to investigate the behavior using different parameters. The results obtained are very similar using a lower amount of data due to the characteristics of the wavelet transform. In other cases a computational gain is obtained which is discussed separating the process into four distinct stages and simulating various configurations for the same arrangement.
Carneiro, Diogenes Lemos. „Um estudo sobre a aplicabilidade de redes neurais em criptografia“. Florianópolis, SC, 2001. http://repositorio.ufsc.br/xmlui/handle/123456789/80222.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-18T11:43:11Z (GMT). No. of bitstreams: 1 189558.pdf: 754304 bytes, checksum: 5ba4d26d53a7bd781dd7ffb6430296f6 (MD5)
Diversos dispositivos eletrônicos conectados uns aos outros e o crescimento exponencial da internet levam à necessidade de prover
Ferronato, Giuliano. „Intervalos de predição para redes neurais artificiais via regressão não linear“. Florianópolis, SC, 2008. http://repositorio.ufsc.br/xmlui/handle/123456789/91675.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-24T01:24:51Z (GMT). No. of bitstreams: 1 258459.pdf: 252997 bytes, checksum: a0457bb78b352c0aab2bb1f48ab79985 (MD5)
Este trabalho descreve a aplicação de uma técnica de regressão não linear (mínimos quadrados) para obter predições intervalares em redes neurais artificiais (RNA#s). Através de uma simulação de Monte Carlo é mostrada uma maneira de escolher um ajuste de parâmetros (pesos) para uma rede neural, de acordo com um critério de seleção que é baseado na magnitude dos intervalos de predição fornecidos pela rede. Com esta técnica foi possível obter as predições intervalares com amplitude desejada e com probabilidade de cobertura conhecida, de acordo com um grau de confiança escolhido. Os resultados e as discussões associadas indicam ser possível e factível a obtenção destes intervalos, fazendo com que a resposta das redes seja mais informativa e consequentemente aumentando sua aplicabilidade. A implementação computacional está disponível em www.inf.ufsc.br/~dandrade. This work describes the application of a nonlinear regression technique (least squares) to create prediction intervals on artificial neural networks (ANN´s). Through Monte Carlo#s simulations it is shown a way of choosing the set of parameters (weights) to a neural network, according to a selection criteria based on the magnitude of the prediction intervals provided by the net. With this technique it is possible to obtain the prediction intervals with the desired amplitude and with known coverage probability, according to the chosen confidence level. The associated results and discussions indicate to be possible and feasible to obtain these intervals, thus making the network response more informative and consequently increasing its applicability. The computational implementation is available in www.inf.ufsc.br/~dandrade.
Almeida, Autran Dias de. „Comparação entre métodos para roteamento de redes de dados usando redes neurais artificiais“. Florianópolis, SC, 2001. http://repositorio.ufsc.br/xmlui/handle/123456789/81962.
Der volle Inhalt der QuelleMade available in DSpace on 2012-10-19T09:47:17Z (GMT). No. of bitstreams: 1 199386.pdf: 4412137 bytes, checksum: 0e8101daf48a1d0ceed83976c69485c1 (MD5)
Este documento tem como objetivo apresentar uma série de conceitos e propostas, para elaboração de uma gerência pró-ativa de uma rede de computadores, utilizando as tecnologias de redes neurais Artificiais, e a tecnologia de Agentes autônomos inteligentes. As redes de computadores estão crescendo em importância, em complexidade a cada dia, e uma ação preventiva no gerenciamento destas redes passou a ser de suma
Ender, Laercio. „Redes neurais aplicadas em estrategias de controle não linear“. [s.n.], 2002. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267691.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-03T12:25:12Z (GMT). No. of bitstreams: 1 Ender_Laercio_D.pdf: 6297058 bytes, checksum: 79b5899b5460e5a3374c2f6976f27582 (MD5) Previous issue date: 2002
Resumo: As Redes Neurais Artificiais (RNA) são ferramentas computacionais, com um grande número de aplicações em técnicas de modelagem e controle de processos. Tal fato deve-se à sua capacidade em aprender com suficiente exatidão o comportamento do sistema, gerando modelos genéricos com potencial para projeto de controle não linear, quando equações do modelo são desconhecidas ou somente informações parciais de estados do processo estão disponíveis. Os modelos obtidos através de redes neurais permitem levar em consideração as não linearidades do processo, bem como as interações entre as suas variáveis. O trabalho desenvolvido explora o uso de redes neurais em estratégias de controle multivariável, enfatizando situações em que estas são utilizadas como modelos dinâmicos na geração de predições, bem como na definição de estratégias de controle totalmente baseadas em redes neurais com aprendizagem on-line. A aprendizagem on-line das redes utilizadas permite a sua adaptação continuamente ao longo do tempo, treinando-as em situações não abordadas na etapa de aprendizagem off-line. A aprendizagem oif-line das redes neurais é realizada a partir de um conjunto consistente de dados históricos de perturbações e respostas do processo, a qual deverá garantir, no mínimo, um desempenho satisfatória da rede neural, para a partida do sistema de controle. Explora-se também, a utilização de modelos estáticos do processo, baseados em redes neurais, acoplados à rotina de otimização on-line, objetivando identificar as melhores condições operacionais deste processo para atender especificações de referências preestabelecidas. Dentro deste contexto, foram desenvolvidas estratégias de controle multivariável explorando as potencial idades das redes neurais, seja como modelo de processos e/ou como controladores, enfatizando a aprendizagem on-line. Para o desenvolvimento deste trabalho foram implementados diversos programas computacionais, em linguagem de pragramação Fortran 90, relativos aos algoritmos de controle propostos/avaliados Os resultados alcançados mostram a eficiência das técnicas abordadas, comprovando o potencial do uso das redes neurais em estratégias de controle
The artificial neural networks are computational tools with a great number of applications in modeling techniques and process control. Such fact is due its capacity to learn sufficiently accurate models and give good nonlinear control when model equations are not known or only partial state information is available. Neural network approach allows taking into account in an elegant and adequate way process non-linearities as well as variable interactions. The developed work explores the use of the neural networks in multivariable control strategies as dynamic models for predictions as well as in the definition of the control strategy based on neural networks with on-line learning. The off-line learning of the neural networks is accomplished with a consistent group of historical data of perturbations and responses of the process, which should guarantee at least a satisfactory performance of the neural network for starting of the control system. It is also explored the use of static models of the process, based on neural networks, coupled with a on-line optimization routine, objectifying to identify the best operational conditions to attend specifications of the process. In this context, multivariable control strategies were developed exploring the potentialities of the neural networks as process model and/or as controllers, emphasizing the on-line learning. Several computational programs were implemented for the developrnent of this work in Fortran 90 language program relative to the control algorithms proposed and evaluated. The obtained results show the efficiency of the approached techniques, checking the potential of the use of the neural networks in control strategies
Doutorado
Doutor em Engenharia Química
Furini, Marcos Amorielle [UNESP]. „Projeto de controladores suplementares de amortecimento utilizando redes neurais artificiais“. Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/100323.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho é proposta a utilização da rede neural artificial (RNA) ARTMAP Nebulosa (fuzzy) no ajuste de parâmetros de controladores suplementares para o amortecimento de oscilações eletromecânicas de sistemas elétricos de potência, visando tornar este ajuste mais eficiente. Análises comparativas da atuação das redes neurais artificiais ARTMAP Nebulosa e Perceptron Multicamadas (PM) são realizadas para dois sistemas multimáquinas considerando o ajuste individual e coordenado dos controladores. Tais redes são utilizadas para o projeto dos controladores ESP (Estabilizadores de Sistemas de Potência) e POD (Power Oscillation Damping) acoplado ao dispositivo FACTS (Flexible Alternating Current Transmission Systems) UPFC (Unified Power Flow Controller). Será evidenciado que a RNA ARTMAP Nebulosa pode ser utilizada na melhora da estabilidade dinâmica, fornecendo resultados muito semelhantes aos da RNA Perceptron Multicamadas. Entretanto, é importante enfatizar que a vantagem da utilização da RNA ARTMAP Nebulosa está no fato da garantia da estabilidade e plasticidade associadas a um rápido treinamento, o que não ocorre com a RNA Perceptron Multicamadas
This work proposes the use of artificial neural network (ANN) Fuzzy ARTMAP to adjust the parameters of additional controllers to damp electromechanical oscillations in electric power systems in order to make this adjustment more efficient due to variations in load. Comparative analysis of the performance of artificial neural networks Fuzzy ARTMAP and Multilayer Perceptron are performed for two multimachine systems, considering individual and coordinated controller adjustment. Those networks are used for the design of Power System Stabilizers (PSS) and Power Oscillation Damping (POD) that is coupled to the FACTS (Flexible Alternating Current Transmission Systems) UPFC (Unified Power Flow Controller). It will be shown that the ANN Fuzzy ARTMAP can be used in the improvement of dynamic stability, providing very similar results to the ANN Multilayer Perceptron. However, it is important to emphasize that the advantage of using ANN Fuzzy ARTMAP is the guarantee of stability and plasticity associated with a fast training process which does not occur for the ANN Multilayer Perceptron
Pontes, Fabrício José. „Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos /“. Guaratinguetá : [s.n.], 2011. http://hdl.handle.net/11449/103054.
Der volle Inhalt der QuelleAbstract: The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Network in machining processes. Ir proposes a method for the project networks of MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) architectures optimized for prediction of Average Surface Roughness (Ru). The methid is expressed in the format of an algorithm employing two techniques from the DOE (Design of Experiments) methodology: Full factorials and Evolutionary Operations(EVOP). The strategy adopted consists in the sistematic use of DOE in a search for network configurations that benefits performance in roughess prediction. Cutting para meters from machining operations are employed as network inputs. Themean absolute error in percentage (MAE%) of the lower decile of the predictions for the test set is used as a figure of merit for network performance. In order to validate the method, data sets retrieved from literature, as well as results of experiments with AISI/SAE free-machining steel, are employed to form training and test data sets for the networks. The proposed algorithm leads to significant reduction in prediction error for surface roughness when compared to the performance delivred by a regression model, by the networks proposed by the original studies data was borrowed from and when compared models proposed by a software package intend to search automatically for optimal network configurations. In addition, networks designed acording to the proposed algorithm displayed reduced dispersion of prediction error for surface roughness when compared to the performance delivered by a regression model, by the networks proposed by the original studies data was borrowed from and when compared to neural models proposed by a software package intended to searchautomatically for optimal network configurations. In addition, networks designed according to the proposed algorith ... (Complete abstract click electronic access below)
Orientador: Messias Borges Silva
Coorientador: Anderson Paulo de Paiva
Banca: Marcos Valério Ribeiro
Banca: Marcela A. G. Machado de Freitas
Banca: Domingos Sávio Giordani
Banca: João Roberto Ferreira
Doutor
Loiola, Roberto Rodrigues. „Redes neurais artificiais aplicadas ao problema da localização em ambientes fechados“. reponame:Repositório Institucional da UnB, 2009. http://repositorio.unb.br/handle/10482/8332.
Der volle Inhalt der QuelleSubmitted by Jaqueline Ferreira de Souza (jaquefs.braz@gmail.com) on 2011-06-11T01:59:35Z No. of bitstreams: 1 2009_RobertoRodriguesLoiola.pdf: 8933604 bytes, checksum: 35516e2dcac7ddee716226fa67e9a6d0 (MD5)
Approved for entry into archive by Jaqueline Ferreira de Souza(jaquefs.braz@gmail.com) on 2011-06-11T02:00:24Z (GMT) No. of bitstreams: 1 2009_RobertoRodriguesLoiola.pdf: 8933604 bytes, checksum: 35516e2dcac7ddee716226fa67e9a6d0 (MD5)
Made available in DSpace on 2011-06-11T02:00:24Z (GMT). No. of bitstreams: 1 2009_RobertoRodriguesLoiola.pdf: 8933604 bytes, checksum: 35516e2dcac7ddee716226fa67e9a6d0 (MD5)
Essa dissertação aborda o problema da localização em ambientes fechados baseada em técnicas de redes neurais artificiais. Nesse sistema, a informação da intensidade do sinal recebido (RSSI) disponibilizada por interfaces de rede sem fio padrão é a base para a previsão de localização de dispositivos móveis. Métodos tradicionais de localização indoor possuem diversas características indesejáveis, tais como dificuldade de implementação, pouca flexibilidade (não permitem a utilização da infra-estrutura presente no local sem grandes alterações na disposição de APs), número elevado de parâmetros e alto custo computacional. Foram realizadas implementações de algoritmos tradicionais de localização (Algoritmo do Vizinho mais Próximo), métodos baseados em Redes Neurais Multicamadas (Perceptron MLP) e mapas auto-organizáveis de Kohonen. Conclui-se que esta última implementação (Kohonen) é capaz de prover resultados significativamente superiores àqueles obtidos em estudos recentes de localização indoor. _______________________________________________________________________________ ABSTRACT
This thesis addresses the indoor location problem using on artificial neural networks-based techniques. In this system, the received signal strength information (RSSI) provided by standard network wireless interfaces are the basis for mobile device's location prediction. Traditional methods of indoor location have several undesirable characteristics, such as implementation difficulties, lack of flexibility (requiring APs specific position), high number of parameters and high computational cost. Traditional indoor location algorithms such as the Nearest Neighbor Algorithm were compared to methods based on Multilayer Neural Networks (Perceptron MLP) and the Kohonen self-organized map. We conclude that the Kohonen's implementation is able to provide significantly better results (less errors, faster localization) than those obtained in recent studies of indoor localization.
Campanha, Jose Roberto. „Determinação dos parametros de ordem de redes neurais pelo metodo cumulante“. [s.n.], 1994. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260439.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica
Made available in DSpace on 2018-07-19T07:55:54Z (GMT). No. of bitstreams: 1 Campanha_JoseRoberto_D.pdf: 5894259 bytes, checksum: 50a6db00a4aedfc2f04ddd819fc66307 (MD5) Previous issue date: 1994
Resumo: Propomos neste trabalho um método mais simples, para o cálculo dos parâmetros de ordem de redes neurais, baseados nos cumulantes de uma distribuição. Aplicamos este método ao modelo de Hopfield,obtivemos seus parâmetros de ordem m.q e r e baseados nestes parâmetros, construímos seu diagrama de fase. A seguir, estudamos com nosso método, um modelo de rede neural com esquecimento, e outra rede com baixo nível de atividade neural obtendo novamente, os mesmos resultados que os obtidos pelos métodos da Mecânica Estatística. Trata-se de uma generalização da regra de Hebb, em que consideramos a variação espacial da interação. A partir do método dos cumulantes calculamos os parâmetros de ordem do 1t modelo e mostramos que para k > -2L não há recuperação dos padrões aprendidos pela rede. A principal vantagem do método proposto é ser mais simples do que os métodos da Mecânica Estatística, e por isto acredito, ser acessível a profissionaisde outras áreas
Abstract: Not informed.
Doutorado
Automação
Doutor em Engenharia Elétrica