Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Regresión de Ridge“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Regresión de Ridge" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Regresión de Ridge"
Pérez-Planells, Ll, J. Delegido, J. P. Rivera-Caicedo und J. Verrelst. „Análisis de métodos de validación cruzada para la obtención robusta de parámetros biofísicos“. Revista de Teledetección, Nr. 44 (22.12.2015): 55. http://dx.doi.org/10.4995/raet.2015.4153.
Der volle Inhalt der QuelleMcDonald, Gary C. „Ridge regression“. Wiley Interdisciplinary Reviews: Computational Statistics 1, Nr. 1 (Juli 2009): 93–100. http://dx.doi.org/10.1002/wics.14.
Der volle Inhalt der QuelleFearn, Tom. „Ridge Regression“. NIR news 24, Nr. 3 (Mai 2013): 18–19. http://dx.doi.org/10.1255/nirn.1365.
Der volle Inhalt der QuelleRashid, Khasraw A., und Hanaw A. Amin. „Ridge Estimates of Regression Coefficients for SoilMoisture Retention of IraqiSoils“. Journal of Zankoy Sulaimani - Part A 18, Nr. 3 (25.02.2016): 85–98. http://dx.doi.org/10.17656/jzs.10537.
Der volle Inhalt der QuelleDorugade, A. V. „New ridge parameters for ridge regression“. Journal of the Association of Arab Universities for Basic and Applied Sciences 15, Nr. 1 (April 2014): 94–99. http://dx.doi.org/10.1016/j.jaubas.2013.03.005.
Der volle Inhalt der QuelleMunroe, Jeffrey S. „Ground Penetrating Radar Investigation of Late Pleistocene Shorelines of Pluvial Lake Clover, Elko County, Nevada, USA“. Quaternary 3, Nr. 1 (20.03.2020): 9. http://dx.doi.org/10.3390/quat3010009.
Der volle Inhalt der Quellede Boer, Paul M. C., und Christian M. Hafner. „Ridge regression revisited“. Statistica Neerlandica 59, Nr. 4 (13.10.2005): 498–505. http://dx.doi.org/10.1111/j.1467-9574.2005.00304.x.
Der volle Inhalt der QuelleHertz, D. „Sequential ridge regression“. IEEE Transactions on Aerospace and Electronic Systems 27, Nr. 3 (Mai 1991): 571–74. http://dx.doi.org/10.1109/7.81440.
Der volle Inhalt der QuelleTutz, Gerhard, und Harald Binder. „Boosting ridge regression“. Computational Statistics & Data Analysis 51, Nr. 12 (August 2007): 6044–59. http://dx.doi.org/10.1016/j.csda.2006.11.041.
Der volle Inhalt der QuelleSundberg, Rolf. „Continuum Regression and Ridge Regression“. Journal of the Royal Statistical Society: Series B (Methodological) 55, Nr. 3 (Juli 1993): 653–59. http://dx.doi.org/10.1111/j.2517-6161.1993.tb01930.x.
Der volle Inhalt der QuelleDissertationen zum Thema "Regresión de Ridge"
Williams, Ulyana P. „On Some Ridge Regression Estimators for Logistic Regression Models“. FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3667.
Der volle Inhalt der QuelleMahmood, Nozad. „Sparse Ridge Fusion For Linear Regression“. Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5986.
Der volle Inhalt der QuelleM.S.
Masters
Statistics
Sciences
Statistical Computing
Younker, James. „Ridge Estimation and its Modifications for Linear Regression with Deterministic or Stochastic Predictors“. Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22662.
Der volle Inhalt der QuelleKuhl, Mark R. „Ridge regression signal processing applied to multisensor position fixing“. Ohio : Ohio University, 1990. http://www.ohiolink.edu/etd/view.cgi?ohiou1183651058.
Der volle Inhalt der QuelleZaldivar, Cynthia. „On the Performance of some Poisson Ridge Regression Estimators“. FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3669.
Der volle Inhalt der QuelleWissel, Julia. „A new biased estimator for multivariate regression models with highly collinear variables“. Doctoral thesis, kostenfrei, 2009. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3638/.
Der volle Inhalt der QuelleBakshi, Girish. „Comparison of ridge regression and neural networks in modeling multicollinear data“. Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178815205.
Der volle Inhalt der QuelleLi, Ying. „A Comparison Study of Principle Component Regression, Partial Least Square Regression and Ridge Regression with Application to FTIR Data“. Thesis, Uppsala University, Department of Statistics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-127983.
Der volle Inhalt der QuelleLeast squares estimator may fail when the number of explanatory vari-able is relatively large in comparison to the sample or if the variablesare almost collinear. In such a situation, principle component regres-sion, partial least squares regression and ridge regression are oftenproposed methods and widely used in many practical data analysis,especially in chemometrics. They provide biased coecient estima-tors with the relatively smaller variation than the variance of the leastsquares estimator. In this paper, a brief literature review of PCR,PLS and RR is made from a theoretical perspective. Moreover, a dataset is used, in order to examine their performance on prediction. Theconclusion is that for prediction PCR, PLS and RR provide similarresults. It requires substantial verication for any claims as to thesuperiority of any of the three biased regression methods.
Silva, Tatiane Cazarin da. „Algoritmos primais-duais de ponto fixo aplicados ao problema Ridge Regression“. reponame:Repositório Institucional da UFPR, 2016. http://hdl.handle.net/1884/43736.
Der volle Inhalt der QuelleCoorientador : Profª. Drª. Gislaine Aparecida Periçaro
Tese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa: Curitiba, 08/06/2016
Inclui referências : f. 60-64
Área de concentração : Progressão matemática
Resumo: Neste trabalho propomos algoritmos para resolver uma formulação primal-dual geral de ponto fixo aplicada ao problema de Ridge Regression. Estudamos a formulação primal para problemas de quadrados mínimos regularizado, em especial na norma L2, nomeados Ridge Regression e descrevemos a dualidade convexa para essa classe de problemas. Nossa estratégia foi considerar as formulações primal e dual conjuntamente, e minimizar o gap de dualidade entre elas. Estabelecemos o algoritmo de ponto fixo primal-dual, nomeado SRP e uma reformulação para esse método, contribuição principal da tese, a qual mostrou-se mais eficaz e robusta, designada por método acc-SRP, ou versão acelerada do método SRP. O estudo teórico dos algoritmos foi feito por meio da análise de propriedades espectrais das matrizes de iteração associadas. Provamos a convergência linear dos algoritmos e apresentamos alguns exemplos numéricos comparando duas variantes para cada algoritmo proposto. Mostramos também que o nosso melhor método, acc-SRP, possui excelente desempenho numérico na resolução de problemas muito mal-condicionados quando comparado ao Método de Gradientes Conjugados, o que o torna computacionalmente mais atraente. Palavras-chave: Métodos primais-duais, Ridge Regression, ponto fixo, dualidade, métodos acelerados
Abstract: In this work we propose algorithms for solving a fixed-point general primal-dual formulation applied to the Ridge Regression problem. We study the primal formulation for regularized least squares problems, especially L2-norm, named Ridge Regression and then describe convex duality for that class of problems. Our strategy was to consider together primal and dual formulations and minimize the duality gap between them. We established the primal-dual fixed point algorithm, named SRP and a reformulation for this method, the main contribution of the thesis, which was more efficient and robust, called acc-SRP method or accelerated version of the SRP method. The theoretical study of the algorithms was done through the analysis of the spectral properties of the associated iteration matrices. We proved the linear convergence of algorithms and some numerical examples comparing two variants for each algorithm proposed were presented. We also showed that our best method, acc-SRP, has excellent numerical performance for solving very ill-conditioned problems, when compared to the conjugate gradient method, which makes it computationally more attractive. Key-words: Primal-dual methods, ridge regression, fixed point, duality, accelerated methods.
Saha, Angshuman. „Application of ridge regression for improved estimation of parameters in compartmental models /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8945.
Der volle Inhalt der QuelleBücher zum Thema "Regresión de Ridge"
Gruber, Marvin H. J. Regression estimators: A comparative study. 2. Aufl. Baltimore: Johns Hopkins University Press, 2010.
Den vollen Inhalt der Quelle findenSaleh, A. K. Md Ehsanes, Mohammad Arashi und B. M. Golam Kibria, Hrsg. Theory of Ridge Regression Estimation with Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781118644478.
Der volle Inhalt der QuelleCoshall, John. An illustration of ridge regression using agricultural data. London: University of North London Press, 1993.
Den vollen Inhalt der Quelle findenImproving efficiency by shrinkage: The James-Stein and ridge regression estimators. New York: Marcel Dekker, 1998.
Den vollen Inhalt der Quelle findenGruber, Marvin H. J. Regression estimators: A comparative study. Boston: Academic Press, 1990.
Den vollen Inhalt der Quelle findenGruber, Marvin H. J. Regression estimators: A comparative study. Boston: Academic Press, 1992.
Den vollen Inhalt der Quelle findenRegression estimators: A comparative study. 2. Aufl. Baltimore: Johns Hopkins University Press, 2010.
Den vollen Inhalt der Quelle findenGruber, Marvin H. J. Regression estimators: A comparative study. 2. Aufl. Baltimore: Johns Hopkins University Press, 2010.
Den vollen Inhalt der Quelle findenVerallgemeinerte Ridge Regression: Eine Untersuchung von theoretischen Eigenschaften und der Operationalität verzerrter Schätzer im linearen Modell. Frankfurt am Main: A. Hain, 1986.
Den vollen Inhalt der Quelle findenAhmed, S. E. (Syed Ejaz), 1957- editor of compilation, Hrsg. Perspectives on big data analysis: Methodologies and applications : International Workshop on Perspectives on High-Dimensional Data Anlaysis II, May 30-June 1, 2012, Centre de Recherches Mathématiques, University de Montréal, Montréal, Québec, Canada. Providence, Rhode Island: American Mathematical Society, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Regresión de Ridge"
Vovk, Vladimir. „Kernel Ridge Regression“. In Empirical Inference, 105–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41136-6_11.
Der volle Inhalt der QuelleVinod, H. D. „Confidence Intervals for Ridge Regression Parameters“. In Time Series and Econometric Modelling, 279–300. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4790-0_19.
Der volle Inhalt der QuellePapadopoulos, Harris. „Cross-Conformal Prediction with Ridge Regression“. In Statistical Learning and Data Sciences, 260–70. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17091-6_21.
Der volle Inhalt der QuelleZhdanov, Fedor, und Yuri Kalnishkan. „An Identity for Kernel Ridge Regression“. In Lecture Notes in Computer Science, 405–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16108-7_32.
Der volle Inhalt der QuelleCawley, Gavin C., Nicola L. C. Talbot und Olivier Chapelle. „Estimating Predictive Variances with Kernel Ridge Regression“. In Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, 56–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11736790_5.
Der volle Inhalt der QuelleWang, Ling, Liefeng Bo und Licheng Jiao. „Sparse Kernel Ridge Regression Using Backward Deletion“. In Lecture Notes in Computer Science, 365–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36668-3_40.
Der volle Inhalt der QuelleShigeto, Yutaro, Ikumi Suzuki, Kazuo Hara, Masashi Shimbo und Yuji Matsumoto. „Ridge Regression, Hubness, and Zero-Shot Learning“. In Machine Learning and Knowledge Discovery in Databases, 135–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23528-8_9.
Der volle Inhalt der QuelleOhishi, Mineaki, Hirokazu Yanagihara und Hirofumi Wakaki. „Optimization of Generalized $$C_p$$ Criterion for Selecting Ridge Parameters in Generalized Ridge Regression“. In Intelligent Decision Technologies, 267–78. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5925-9_23.
Der volle Inhalt der QuelleShu, Xin, und Hongtao Lu. „Neighborhood Structure Preserving Ridge Regression for Dimensionality Reduction“. In Communications in Computer and Information Science, 25–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33506-8_4.
Der volle Inhalt der QuelleZuliana, Sri Utami, und Aris Perperoglou. „The Weight of Penalty Optimization for Ridge Regression“. In Analysis of Large and Complex Data, 231–39. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25226-1_20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Regresión de Ridge"
Siripurapu, Sundeep Krishna, und Anthony F. Luscher. „Modeling Shear Performance of High-Speed Ridged Nail in Aluminum Joints“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68309.
Der volle Inhalt der QuelleBurnaev, Evgeny, und Ivan Nazarov. „Conformalized Kernel Ridge Regression“. In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2016. http://dx.doi.org/10.1109/icmla.2016.0017.
Der volle Inhalt der QuelleKakula, Siva K., Anthony J. Pinar, Timothy C. Havens und Derek T. Anderson. „Choquet Integral Ridge Regression“. In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2020. http://dx.doi.org/10.1109/fuzz48607.2020.9177657.
Der volle Inhalt der QuelleHe, Jinrong, Lixin Ding, Lei Jiang und Ling Ma. „Kernel ridge regression classification“. In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889396.
Der volle Inhalt der QuelleYang, Changmao, Jie Xu und Sicong Gong. „Objective Ridge Regression System“. In 2020 7th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2020. http://dx.doi.org/10.1109/icisce50968.2020.00192.
Der volle Inhalt der QuelleAn, Senjian, Wanquan Liu und Svetha Venkatesh. „Face Recognition Using Kernel Ridge Regression“. In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383105.
Der volle Inhalt der QuelleGratton, Cristiano, Naveen K. D. Venkategowda, Reza Arablouei und Stefan Werner. „Distributed Ridge Regression with Feature Partitioning“. In 2018 52nd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2018. http://dx.doi.org/10.1109/acssc.2018.8645549.
Der volle Inhalt der QuelleTanaka, Akira. „Mathematical Interpretations of Kernel Ridge Regression“. In COMPUTING ANTICIPATORY SYSTEMS: CASYS'05 - Seventh International Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2216644.
Der volle Inhalt der QuelleDimitrov, S., S. Kovacheva, K. Prodanova und Michail D. Todorov. „Realization of Ridge Regression in MATLAB“. In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS: Proceedings of the 34th Conference on Applications of Mathematics in Engineering and Economics (AMEE '08). AIP, 2008. http://dx.doi.org/10.1063/1.3030819.
Der volle Inhalt der QuelleChavez, Gustavo, Yang Liu, Pieter Ghysels, Xiaoye Sherry Li und Elizaveta Rebrova. „Scalable and Memory-Efficient Kernel Ridge Regression“. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2020. http://dx.doi.org/10.1109/ipdps47924.2020.00102.
Der volle Inhalt der Quelle