Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Retrieval Augmented Generation (RAG)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Retrieval Augmented Generation (RAG)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Retrieval Augmented Generation (RAG)"
Mishra, Ankit, und Aniket Gupta. „Retrieval Augmented Generation (RAG) Model“. International Journal of Research Publication and Reviews 6, Nr. 6 (Januar 2025): 4690–93. https://doi.org/10.55248/gengpi.6.0125.0635.
Der volle Inhalt der QuelleLiu, Yicheng. „Retrieval-Augmented Generation: Methods, Applications and Challenges“. Applied and Computational Engineering 142, Nr. 1 (24.04.2025): 99–108. https://doi.org/10.54254/2755-2721/2025.kl22312.
Der volle Inhalt der QuelleLong, Xinwei, Zhiyuan Ma, Ermo Hua, Kaiyan Zhang, Biqing Qi und Bowen Zhou. „Retrieval-Augmented Visual Question Answering via Built-in Autoregressive Search Engines“. Proceedings of the AAAI Conference on Artificial Intelligence 39, Nr. 23 (11.04.2025): 24723–31. https://doi.org/10.1609/aaai.v39i23.34653.
Der volle Inhalt der QuelleHan, Binglan, Teo Susnjak und Anuradha Mathrani. „Automating Systematic Literature Reviews with Retrieval-Augmented Generation: A Comprehensive Overview“. Applied Sciences 14, Nr. 19 (09.10.2024): 9103. http://dx.doi.org/10.3390/app14199103.
Der volle Inhalt der QuelleChoi, Yein, Sungwoo Kim, Yipene Cedric Francois Bassole und Yunsick Sung. „Enhanced Retrieval-Augmented Generation Using Low-Rank Adaptation“. Applied Sciences 15, Nr. 8 (17.04.2025): 4425. https://doi.org/10.3390/app15084425.
Der volle Inhalt der QuelleGrabuloski, Marko, Aleksandar Karadimce und Anis Sefidanoski. „Enhancing Language Models with Retrieval-Augmented Generation A Comparative Study on Performance“. WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS 22 (02.04.2025): 272–97. https://doi.org/10.37394/23209.2025.22.23.
Der volle Inhalt der QuelleChen, Jiawei, Hongyu Lin, Xianpei Han und Le Sun. „Benchmarking Large Language Models in Retrieval-Augmented Generation“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 16 (24.03.2024): 17754–62. http://dx.doi.org/10.1609/aaai.v38i16.29728.
Der volle Inhalt der QuelleDong, Guanting, Xiaoshuai Song, Yutao Zhu, Runqi Qiao, Zhicheng Dou und Ji-Rong Wen. „Toward Verifiable Instruction-Following Alignment for Retrieval Augmented Generation“. Proceedings of the AAAI Conference on Artificial Intelligence 39, Nr. 22 (11.04.2025): 23796–804. https://doi.org/10.1609/aaai.v39i22.34551.
Der volle Inhalt der QuelleShaji, Edwin Alex, Jerishab M. Jerishab M, Leya Thomas, M. Viraj Prabhu und Asst Prof Chinchu M Pillai. „Survey on Speech Recognition and Retrieval-Augmented Generation“. International Journal of Advances in Engineering and Management 06, Nr. 12 (Dezember 2024): 75–81. https://doi.org/10.35629/5252-06127581.
Der volle Inhalt der QuelleVaibhav Fanindra Mahajan. „Retrieval-augmented generation: The technical foundation of intelligent AI Chatbots“. World Journal of Advanced Research and Reviews 26, Nr. 1 (30.04.2025): 4093–99. https://doi.org/10.30574/wjarr.2025.26.1.1571.
Der volle Inhalt der QuelleDissertationen zum Thema "Retrieval Augmented Generation (RAG)"
Schaeffer, Marion. „Towards efficient Knowledge Graph-based Retrieval Augmented Generation for conversational agents“. Electronic Thesis or Diss., Normandie, 2025. http://www.theses.fr/2025NORMIR06.
Der volle Inhalt der QuelleConversational agents have become widespread in recent years. Today, they have transcended their initial purpose of simulating a conversation with a computer program and are now valuable tools for accessing information and carrying out various tasks, from customer service to personal assistance. With the rise of text-generative models and Large Language Models (LLMs), the capabilities of conversational agents have increased tenfold. However, they are now subject to hallucinations, producing false information. A popular technique to limit the risk of hallucinations is Retrieval Augmented Generation (RAG), which injects knowledge into a text generation process. Such injected knowledge can be drawn from Knowledge Graphs (KGs), which are structured machine-readable knowledge representations. Therefore, we explore Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) to build trusted conversational agents. We demonstrate our approach on a real-world use case for citizen support by building conversational agents for disability management in cities. We first present a history of conversational agents, introducing the approaches implemented over the years and the evaluation techniques. We then define KGs and ontologies, and explore construction and evaluation techniques. As we could not find a directly exploitable KG, our first contribution introduces the Ontology Learning Applied Framework (OLAF). This modular system is built for automated and repeatable KG construction from unstructured text. OLAF integrates linguistic, statistical, and LLM-based techniques to generate Minimum Viable Ontologies for specific domains. Applied to real-world datasets, OLAF demonstrates robust performance through gold-standard evaluations and task-specific Competency Questions. We detail the construction process for a KG about disability management in a French city. We then propose an architecture for KG-RAG systems to enhance information retrieval by aligning user queries with KG structures through entity linking, graph queries, and LLM-based retrieval approaches. We demonstrate our architecture on different use cases, which we evaluate using criteria such as performance, human preference, and environmental impact. While user preferences advantage Text-RAG, KG-RAG's reduced computational footprint underscores its potential for sustainable AI practices. Finally, we identify the critical part of the architecture as the retriever. Therefore, we tackle the retrieval task in our architecture by exploring embeddings in various contexts, i.e. improving EL, retrieval, and providing a caching system. We also propose mechanisms for handling multi-turn conversations. This work establishes a comprehensive framework for KG-RAG systems, combining the semantic depth of KGs with the generative capabilities of LLMs to deliver accurate, contextual, and sustainable conversational agents. Contributions include OLAF for scalable KG construction, a robust KG-RAG pipeline, and embedding-based enhancements for retrieval and interaction quality. By addressing conversational agents' industrial challenges, such as scalability, retrieval precision, and conversational coherence, this research lays the foundation for deploying KG-RAG systems in diverse and specialised domains
Busatta, Gianluca. „Italian Retrieval-Augmented Generative Question Answering System for Legal Domains“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Den vollen Inhalt der Quelle findenBücher zum Thema "Retrieval Augmented Generation (RAG)"
sahota, harpreet. Practical Retrieval Augmented Generation. Wiley & Sons, Incorporated, John, 2024.
Den vollen Inhalt der Quelle findensahota, harpreet. Practical Retrieval Augmented Generation. Wiley & Sons, Incorporated, John, 2024.
Den vollen Inhalt der Quelle findensahota, harpreet. Practical Retrieval Augmented Generation. Wiley & Sons, Incorporated, John, 2024.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Retrieval Augmented Generation (RAG)"
Parasuraman, Banu. „Spring AI and RAG (Retrieval-Augmented Generation)“. In Mastering Spring AI, 115–79. Berkeley, CA: Apress, 2024. https://doi.org/10.1007/979-8-8688-1001-5_4.
Der volle Inhalt der QuelleShan, Richard, und Tony Shan. „Retrieval-Augmented Generation Architecture Framework: Harnessing the Power of RAG“. In Lecture Notes in Computer Science, 88–104. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-77954-1_6.
Der volle Inhalt der QuelleGhadekar, Premanand, Shreyash Tekade, Dhawal Sakharwade, Sayee Zanzane, Ankur Tripathi und Shivam Tiwadi. „Real-time crisis response optimization with Retrieval Augmented Generation (RAG)“. In Intelligent Computing and Communication Techniques, 86–91. London: CRC Press, 2025. https://doi.org/10.1201/9781003530190-14.
Der volle Inhalt der QuelleBabaei Giglou, Hamed, Tilahun Abedissa Taffa, Rana Abdullah, Aida Usmanova, Ricardo Usbeck, Jennifer D’Souza und Sören Auer. „Scholarly Question Answering Using Large Language Models in the NFDI4DataScience Gateway“. In Lecture Notes in Computer Science, 3–18. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65794-8_1.
Der volle Inhalt der QuelleHolvoet, Laura, Michael van Bekkum und Aijse de Vries. „An Approach to Automated Instruction Generation with Grounding Using LLMs and RAG“. In Lecture Notes in Mechanical Engineering, 224–33. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-86489-6_23.
Der volle Inhalt der QuelleJay, Rabi. „Building Advanced Q&A and Search Applications Using Retrieval-Augmented Generation (RAG)“. In Generative AI Apps with LangChain and Python, 259–313. Berkeley, CA: Apress, 2024. https://doi.org/10.1007/979-8-8688-0882-1_7.
Der volle Inhalt der QuelleNazary, Fatemeh, Yashar Deldjoo und Tommaso di Noia. „Poison-RAG: Adversarial Data Poisoning Attacks on Retrieval-Augmented Generation in Recommender Systems“. In Lecture Notes in Computer Science, 239–51. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-88717-8_18.
Der volle Inhalt der QuellePradeep, Ronak, Nandan Thakur, Sahel Sharifymoghaddam, Eric Zhang, Ryan Nguyen, Daniel Campos, Nick Craswell und Jimmy Lin. „Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track“. In Lecture Notes in Computer Science, 132–48. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-88708-6_9.
Der volle Inhalt der QuelleWiratunga, Nirmalie, Ramitha Abeyratne, Lasal Jayawardena, Kyle Martin, Stewart Massie, Ikechukwu Nkisi-Orji, Ruvan Weerasinghe, Anne Liret und Bruno Fleisch. „CBR-RAG: Case-Based Reasoning for Retrieval Augmented Generation in LLMs for Legal Question Answering“. In Case-Based Reasoning Research and Development, 445–60. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63646-2_29.
Der volle Inhalt der QuelleOtto, Wolfgang, Sharmila Upadhyaya und Stefan Dietze. „Enhancing Software-Related Information Extraction via Single-Choice Question Answering with Large Language Models“. In Lecture Notes in Computer Science, 289–306. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65794-8_21.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Retrieval Augmented Generation (RAG)"
Tural, Büşra, Zeynep Örpek und Zeynep Destan. „Retrieval-Augmented Generation (RAG) and LLM Integration“. In 2024 8th International Symposium on Innovative Approaches in Smart Technologies (ISAS), 1–5. IEEE, 2024. https://doi.org/10.1109/isas64331.2024.10845308.
Der volle Inhalt der QuelleRappazzo, Brendan Hogan, Yingheng Wang, Aaron Ferber und Carla Gomes. „GEM-RAG: Graphical Eigen Memories for Retrieval Augmented Generation“. In 2024 International Conference on Machine Learning and Applications (ICMLA), 1259–64. IEEE, 2024. https://doi.org/10.1109/icmla61862.2024.00196.
Der volle Inhalt der QuelleRani, Maneeha, Bhupesh Kumar Mishra, Dhavalkumar Thakker und Mohammad Nouman Khan. „To Enhance Graph-Based Retrieval-Augmented Generation (RAG) with Robust Retrieval Techniques“. In 2024 18th International Conference on Open Source Systems and Technologies (ICOSST), 1–6. IEEE, 2024. https://doi.org/10.1109/icosst64562.2024.10871140.
Der volle Inhalt der QuelleBhat, Vani, Sree Divya Cheerla, Jinu Rose Mathew, Nupur Pathak, Guannan Liu und Jerry Gao. „Retrieval Augmented Generation (RAG) Based Restaurant Chatbot with AI Testability“. In 2024 IEEE 10th International Conference on Big Data Computing Service and Machine Learning Applications (BigDataService), 1–10. IEEE, 2024. http://dx.doi.org/10.1109/bigdataservice62917.2024.00008.
Der volle Inhalt der QuelleDanuarta, Leo, Viny Christanti Mawardi und Viciano Lee. „Retrieval-Augmented Generation (RAG) Large Language Model For Educational Chatbot“. In 2024 Ninth International Conference on Informatics and Computing (ICIC), 1–6. IEEE, 2024. https://doi.org/10.1109/icic64337.2024.10957676.
Der volle Inhalt der QuelleSawarkar, Kunal, Abhilasha Mangal und Shivam Raj Solanki. „Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers“. In 2024 IEEE 7th International Conference on Multimedia Information Processing and Retrieval (MIPR), 155–61. IEEE, 2024. http://dx.doi.org/10.1109/mipr62202.2024.00031.
Der volle Inhalt der QuelleAgrawal, Garima, Tharindu Kumarage, Zeyad Alghamdi und Huan Liu. „Mindful-RAG: A Study of Points of Failure in Retrieval Augmented Generation“. In 2024 2nd International Conference on Foundation and Large Language Models (FLLM), 607–11. IEEE, 2024. https://doi.org/10.1109/fllm63129.2024.10852457.
Der volle Inhalt der QuelleCai, Yucheng, Si Chen, Yuxuan Wu, Yi Huang, Junlan Feng und Zhijian Ou. „The 2nd Futuredial Challenge: Dialog Systems With Retrieval Augmented Generation (Futuredial-RAG)“. In 2024 IEEE Spoken Language Technology Workshop (SLT), 1091–98. IEEE, 2024. https://doi.org/10.1109/slt61566.2024.10832299.
Der volle Inhalt der QuelleXiao, Wei, Yu Liu, XiangLong Li, Feng Gao und JinGuang Gu. „TKG-RAG: A Retrieval-Augmented Generation Framework with Text-chunk Knowledge Graph“. In 2024 25th International Arab Conference on Information Technology (ACIT), 1–9. IEEE, 2024. https://doi.org/10.1109/acit62805.2024.10877117.
Der volle Inhalt der QuelleSong, Juntong, Xingguang Wang, Juno Zhu, Yuanhao Wu, Xuxin Cheng, Randy Zhong und Cheng Niu. „RAG-HAT: A Hallucination-Aware Tuning Pipeline for LLM in Retrieval-Augmented Generation“. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, 1548–58. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-industry.113.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Retrieval Augmented Generation (RAG)"
Rahman, Moqsadur, Krish Piryani, Aaron Sanchez, Sai Munikoti, Luis De La Torre, Maxwell Levin, Monika Akbar, Mahmud Hossain, Monowar Hasan und Mahantesh Halappanavar. Retrieval Augmented Generation for Robust Cyber Defense. Office of Scientific and Technical Information (OSTI), September 2024. http://dx.doi.org/10.2172/2474934.
Der volle Inhalt der QuelleSadat, Mohammad Ahnaf. CoralAI: A Retrieval-Augmented Generation Model for Coral-Related Queries. Iowa--Ames: Iowa State University, Dezember 2024. https://doi.org/10.31274/cc-20250502-71.
Der volle Inhalt der Quelle