Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „RMS simulations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "RMS simulations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "RMS simulations"
O’Steen, Lance, und David Werth. „The Application of an Evolutionary Algorithm to the Optimization of a Mesoscale Meteorological Model“. Journal of Applied Meteorology and Climatology 48, Nr. 2 (01.02.2009): 317–29. http://dx.doi.org/10.1175/2008jamc1967.1.
Der volle Inhalt der QuelleMello, Brian, und Mark Stein. „Integrative Learning and Simulating Revolution and Protest in the Middle East“. Review of Middle East Studies 55, Nr. 1 (Juni 2021): 110–23. http://dx.doi.org/10.1017/rms.2021.41.
Der volle Inhalt der QuelleArabnejad, Mohammad Hossein, Håkan Nilsson und Rickard E. Bensow. „Scale-resolving simulations of the flow in the Francis-99 turbine at part-load condition“. IOP Conference Series: Earth and Environmental Science 1079, Nr. 1 (01.09.2022): 012085. http://dx.doi.org/10.1088/1755-1315/1079/1/012085.
Der volle Inhalt der QuelleYuile, Adam, Alexander Schulz, Erik Wiss, Jens Müller und Steffen Wiese. „The Simulated Effect of Adding Solder Layers on Reactive Multilayer Films Used for Joining Processes“. Applied Sciences 12, Nr. 5 (25.02.2022): 2397. http://dx.doi.org/10.3390/app12052397.
Der volle Inhalt der QuellePhilpott, Thomas, Ashish P. Agalgaonkar, Thomas Brinsmead und Kashem M. Muttaqi. „An Open-Source Julia Package for RMS Time-Domain Simulations of Power Systems“. Energies 17, Nr. 22 (13.11.2024): 5677. http://dx.doi.org/10.3390/en17225677.
Der volle Inhalt der QuellePetrović, Predrag B. „Tuneable Current Mode RMS Detector“. Journal of Electrical Engineering 66, Nr. 1 (01.01.2015): 11–18. http://dx.doi.org/10.1515/jee-2015-0002.
Der volle Inhalt der QuelleXiao, Jianguang, Yanxin Wang, Dongmo Zhou, Chenglong He und Xiangrong Li. „Research on the Impact-Induced Deflagration Behavior by Aluminum/Teflon Projectile“. Crystals 12, Nr. 4 (28.03.2022): 471. http://dx.doi.org/10.3390/cryst12040471.
Der volle Inhalt der QuelleLi, Xiaoning, Chuanhai Wang, Gang Chen, Xing Fang, Pingnan Zhang und Wenjuan Hua. „Distributed-Framework Basin Modeling System: Ⅲ. Hydraulic Modeling System“. Water 13, Nr. 5 (28.02.2021): 649. http://dx.doi.org/10.3390/w13050649.
Der volle Inhalt der QuelleBollimpalli, D. A., R. Mahmoud, C. Done, P. C. Fragile, W. Kluźniak, R. Narayan und C. J. White. „Looking for the underlying cause of black hole X-ray variability in GRMHD simulations“. Monthly Notices of the Royal Astronomical Society 496, Nr. 3 (23.06.2020): 3808–28. http://dx.doi.org/10.1093/mnras/staa1808.
Der volle Inhalt der QuelleZima, Beata, und Rafal Kedra. „RMS-based damage detection in reinforced concrete beams: numerical simulations“. Diagnostyka 20, Nr. 4 (17.09.2019): 3–10. http://dx.doi.org/10.29354/diag/112395.
Der volle Inhalt der QuelleDissertationen zum Thema "RMS simulations"
Kalikavunkal, Priya. „Development of EMT Simulation Model to Use RMS Control Model“. Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187641.
Der volle Inhalt der QuelleUtveckling är kontinuerlig och det betyder att även utvecklingen av halvledare är oändlig. Det har lett till att en Voltage Source Converter (VSC) baserad High Voltage Direct Current (HVDC) omvandlare som kallas HVDC Light har skapats. HVDC light är att föredra på grund av dess fördelar i den teknik som används samt applikationerna den används för. Till exempel så tillåter VSC tekniken oberoende kontroll av den verkliga och reaktiva effekten och har minskat kortslutningsströmen. HVDC Light används i applikationer så som vindkraftintegration, offshore strömförsörjning, markkabelöverföring och för att förbättra anslutna växelströmsnät. Styrsystemet i HVDC säkerställer stabiliteten i systemet och kraftflödet mellan AC- och DC-system. Detta görs genom att bestämma det ögonblick då IGBT tänds i strömriktarstationerna (både likriktare och växelriktare). ABB har utvecklat ett RMS (med sekvenskomponenter och fasvektorer) styrsystem baserat på det faktiska styrsystemet i ett helt grafiskt programmeringsverktyg som kallas Hidraw. Denna RMS-kontroll har implementerats i andra simuleringsprogram såsom Netomac, Powerfactory och PSS/E. ABB kallar sin RMS-kontroll för Common Component. Avhandlingen syftar till att implementera en RMS-styrsystemsmodell i en EMT (Electro Magnetic Transient Tools) simulering som utförs vid institutionen för högspänd likström vid ABB, Ludvika. RMS-styrsystemsmodellen är ett befintligt utvecklat styr- och skyddssystem som använder en förenklad representation av det verkliga styrsystemet. När det implementerats jämförs resultaten från RMS-modelen med detaljerade styrsystemsrepresentationer som genomförts i PSCAD. Avhandlingen är ett resultat av ABBs innovativa idéer att implementera Common Component i olika simuleringsverktyg, trots deras olikheter, vilket gör det möjligt att prova och utvärdera styrsystemet maximalt. Det ger också utvecklingspotential för effektiviteten i kraftnäten. Att implementera styrsystemet i ett EMT-verktyg ger även bättre kunskap om att utveckla bättre EMT modeller. Common Component är redan utvecklad men har inte blivit implementerad i PSCAD. Det finns inga referenser till att något sådant arbete har utförts. Därför har inga sådana referenser tagits upp i rapporten. För närvarande så använder EMT verktyget en detaljerad styrsystemsrepresentation som delar samma kodbas som det verkliga styrsystemet, MACHTM (Modular Advanced Control for HVDC) [9]. Implemeteringen av Common Component i PSCAD kräver att gränssnitt mellan de båda kan överföra nödvändiga parametrar. Common Component är utvecklat i C++ och FORTRAN, PSCAD använder FORTRAN. För att kommunikationen mellan de två verktygen ska fungera har ett gränssnitt utvecklats i C++. Den elektriska modell som representerar en HVDC station (likriktaren) har tagits fram i PSCAD. Totalt har fyra olika elektriska modeller implementerats, beskrivits och utvärderats för att hitta en optimal representation. Implemeteringen av Common Component i PSCAD kräver att gränssnitt mellan de båda kan överföra nödvändiga parametrar. Common Component är utvecklat i C++ och FORTRAN, PSCAD använder FORTRAN. För att kommunikationen mellan de två verktygen ska fungera har ett gränssnitt utvecklats i C++. Den elektriska modell som representerar en HVDC station (likriktaren) har tagits fram i PSCAD. Totalt har fyra olika elektriska modeller implementerats, beskrivits och utvärderats för att hitta en optimal representation.
Sénéchal, Dorothée. „DNS des écoulements turbulents compressibles : fluctuations de pression, de masse volumique et de température“. Paris 6, 2009. http://www.theses.fr/2009PA066106.
Der volle Inhalt der QuelleOstrovsky, Rafail. „Software protection and simulation on oblivious RAMs“. Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/103684.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 71-72).
by Rafail M. Ostrovsky.
Ph.D.
Ton, Cuong. „Radar cross section (RCS) simulation for wind turbines“. Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/34754.
Der volle Inhalt der QuelleWind-turbine power provides energy-independence and greenhouse-gas reduction benefits, but if wind turbines are built near military and commercial radar and communication installations, they can cause degradation in the systems performance. The purpose of this research is to study the radar cross section (RCS) of a wind turbine and assess its effect on the performance of radar and communication systems. In this research, some basic scattering characteristics of wind turbines are discussed. Several computational methods of RCS prediction are examined, citing their advantages and disadvantages. Modeling and computational issues that affect the accuracy and convergence of the simulation results are discussed. RCS simulation results for two wind turbine configurations are presented: a horizontal axis, three-blade design and a vertical axis helical design. Several methods of mitigating wind turbine clutter are discussed. Issues of RCS reduction and control for wind turbines are also addressed.
Shao, Min 1975. „A study of RMF monitoring using DEVS simulation“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80119.
Der volle Inhalt der QuelleIncludes bibliographical references (leaf 56).
by Min Shao.
S.B.and M.Eng.
MORGAT, ANNE. „Contribution a l'etude structurale des p21 ras. Simulations par dynamique moleculaire de la p21 ha ras“. Paris 11, 1991. http://www.theses.fr/1991PA112159.
Der volle Inhalt der QuelleGualchieri, Leonardo. „Simulation of bistatic radar experiments with deep space missions“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9682/.
Der volle Inhalt der QuelleGuduff, Ludmilla. „Ultrafast diffusion-ordered NMR analysis of mixtures“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS239/document.
Der volle Inhalt der QuelleNMR spectroscopy is a powerful tool that allows a direct study of mixtures in a non-invasive manner. The NMR spectra of molecular species in mixtures can be separated with diffusion-ordered spectroscopy (DOSY), a ‘virtual chromatography’ approach based on the measurement of translational diffusion coefficients. Major limitation of DOSY comes from the time-dependent diffusion dimension, which results in long experiment durations, and also from the low sensitivity of NMR. The present work aims to build an innovative tool for mixtures characterization that will be faster and more efficient for low concentrated samples. We first generalized the concept of nD spatially encoded (SPEN) DOSY experiments for the analysis of complex mixtures. As bring forward by the so-called “ultrafast NMR” (UF NMR), the use of a spatial dimension to encode diffusion can accelerate experiments by several orders of magnitude since it replaces the sequential acquisition of sub-experiments by a parallel acquisition in different slices of the sample. More advanced exploration of SPENDOSY were carried out using numerical simulations for purpose of resolution and accuracy improvement. To address sensitivity issues, we then demonstrated that SPENDOSY data can be collected for hyperpolarized substrates. This particular coupling between conventional diffusion-based method with advanced techniques such as ultrafast NMR and hyperpolarization should mark a significant progress for complex mixtures analysis especially for time-evolving processes
Veitshans, Thomas. „Propriétés des réseaux permanents ou temporaires dans les polymères : gonflement ; RMN et simulation ; RMN et écoulement“. Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10206.
Der volle Inhalt der QuelleAl-Asad, Zahir. „Implementation of NURBS Objects in a Ray TracingCode for RCS Simulation“. Thesis, Högskolan i Gävle, Ämnesavdelningen för elektronik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-7713.
Der volle Inhalt der QuelleBücher zum Thema "RMS simulations"
E, Demeo Martha, und Langley Research Center, Hrsg. Real-time RMS active damping augmentation: Heavy and very light payload evaluations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenKahlbaum, William M. High-speed real-time animated displays on the ADAGE RDS 3000 raster graphics system. Hampton, Va: Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenT, McQueen Jeffrey, und Air Resources Laboratory (U.S.), Hrsg. Applications of the Regional Atmospheric Modeling System (RAMS) at the NOAA Air Resources Laboratory. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1997.
Den vollen Inhalt der Quelle findenR, Hjelmfelt Mark, Pielke Roger A und United States. National Aeronautics and Space Administration., Hrsg. Numerical simulation of the 9-10 June 1972 Black Hills storm using CSU RAMS. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenR, Hjelmfelt Mark, Pielke Roger A und United States. National Aeronautics and Space Administration., Hrsg. Numerical simulation of the 9-10 June 1972 Black Hills storm using CSU RAMS. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenL, Ownbey Katrina, und United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., Hrsg. High-speed real-time animated displays on the ADAGE® RDS 3000 Raster Graphics System. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Den vollen Inhalt der Quelle findenL, Ownbey Katrina, und United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., Hrsg. High-speed real-time animated displays on the ADAGE® RDS 3000 Raster Graphics System. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Den vollen Inhalt der Quelle findenDESSLER. FRAMEWK for HUMN RES and HUMN RES SIMULATION PK. Pearson Education, Limited, 2004.
Den vollen Inhalt der Quelle findenPadfield, Gareth D. Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modelling. Wiley & Sons, Incorporated, John, 2008.
Den vollen Inhalt der Quelle findenAlberts, Henning, Richard Bader, Jekaterina Bambeck, Daniel Baumgarten, Steffen Bier, Simon Hein, Jakob Müller et al. Risikotragfähigkeit. Erich Schmidt Verlag GmbH & Co. KG, 2025. https://doi.org/10.37307/b.978-3-503-24077-7.
Der volle Inhalt der QuelleBuchteile zum Thema "RMS simulations"
Castelli, Silvia Trini, Tamir Gustavo Reisin und Gianni Tinarelli. „Comparison of RAMS, RMS and MSS Modelling Systems for High Resolution Simulations in Presence of Obstacles for the MUST Field Experiment“. In Air Pollution Modeling and its Application XXI, 9–14. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1359-8_2.
Der volle Inhalt der QuelleKubicki, James D., und Heath D. Watts. „3. Reaction Mechanisms and Solid–Gas Phase Reactions: Theory and Density Functional Theory Simulations“. In High Temperature Gas-Solid Reactions in Earth and Planetary Processes, herausgegeben von Penelope King, Bruce Fegley und Terry Seward, 85–102. Berlin, Boston: De Gruyter, 2018. http://dx.doi.org/10.1515/rmg.2018.84.3.
Der volle Inhalt der QuelleDe Mattia, Salvatore. „SWORD RAS Project“. In Modelling and Simulation for Autonomous Systems, 345–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98260-7_22.
Der volle Inhalt der QuelleSherif, Mohsen, Abdel Azim Ebraheem, Ampar Shetty, Ahmed Sefelnasr, Khaled Alghafli und Mohamed Al Asam. „Evaluation of the Effect of the Wadi Bih Dam on Groundwater Recharge, UAE“. In Natural Disaster Science and Mitigation Engineering: DPRI reports, 509–27. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2904-4_21.
Der volle Inhalt der QuelleNewman, Wyatt S. „Simulation in ROS“. In A Systematic Approach to Learning Robot Programming with ROS, 95–151. Boca Raton : CRC Press, [2017]: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/9781315152691-5.
Der volle Inhalt der QuelleWalko, Robert L., und Roger A. Pielke. „Simulations of Project WIND Cases with RAMS“. In Mesoscale Modeling of the Atmosphere, 97–121. Boston, MA: American Meteorological Society, 1994. http://dx.doi.org/10.1007/978-1-935704-12-6_11.
Der volle Inhalt der QuelleSubramanian, Rajesh. „Robot Simulation and Visualization“. In Build Autonomous Mobile Robot from Scratch using ROS, 261–84. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9645-5_5.
Der volle Inhalt der QuelleJacobsen, Abigail. „Optimizing Manufacturing Operations and Managing Supply Chain Risk with Monte Carlo Simulation“. In Risikomanagement-Schriftenreihe der RMA, 53–62. Berlin: Erich Schmidt Verlag GmbH & Co. KG, 2024. http://dx.doi.org/10.37307/b.978-3-503-23826-2.04.
Der volle Inhalt der QuelleSubramanian, Rajesh. „Setting Up a Workstation for Simulation“. In Build Autonomous Mobile Robot from Scratch using ROS, 89–130. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9645-5_3.
Der volle Inhalt der QuelleAouine, Mimoun, Claude Esnouf und Thierry Epicier. „Simulation of EDS Spectra Using X-RES Software“. In Microbeam and Nanobeam Analysis, 233–40. Vienna: Springer Vienna, 1996. http://dx.doi.org/10.1007/978-3-7091-6555-3_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "RMS simulations"
Ivanov, Chavdar, Georgii Tishenin, Damiano Lanzarotto, Florent Morel und Antonello Monti. „Standardized Model Exchange of HVDC Equipment for RMS and EMT Simulations“. In 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), 1–5. IEEE, 2024. https://doi.org/10.1109/isgteurope62998.2024.10863427.
Der volle Inhalt der QuelleLopez, Mark, Mark Tischler, Kenny Cheung, J. V. R. Prasad und Marc Takahashi. „Simulating HHC/AFCS Interaction and Optimized Controllers using Piloted Maneuvers“. In Vertical Flight Society 71st Annual Forum & Technology Display, 1–13. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10214.
Der volle Inhalt der QuelleEspinoza, Renzo Fabián, und Paulo Godoy. „OpenDSS-Based Real-Time RMS Simulator: Design and Applications“. In 2024 Open Source Modelling and Simulation of Energy Systems (OSMSES), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/osmses62085.2024.10668999.
Der volle Inhalt der QuelleVenters, Ravon, Brian Helenbrook und Goodarz Ahmadi. „Numerical Simulations of Turbulent Flow Through a 90° Elbow“. In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5498.
Der volle Inhalt der QuelleSommerville, Stephen, Gareth A. Taylor und Maysam Abbod. „Potential Benefits and Challenges of Employing Inertia Distribution Indexing in RMS Simulations“. In 2023 58th International Universities Power Engineering Conference (UPEC). IEEE, 2023. http://dx.doi.org/10.1109/upec57427.2023.10295005.
Der volle Inhalt der QuelleHo¨lzer, Andreas, und Martin Sommerfeld. „Transport of Non-Spherical Particles in Turbulence: Application of the LBM“. In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98329.
Der volle Inhalt der QuelleAmeen, Muhsin M., Xiaofeng Yang, Tang-Wei Kuo und Sibendu Som. „Using LES to Simulate Cycle-to-Cycle Variability During the Gas Exchange Process“. In ASME 2017 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icef2017-3591.
Der volle Inhalt der Quellevan Essen, Sanne, Tim Bunnik und Jule Scharnke. „Statistical Uncertainty of Ship Response to Waves As a Function of Test Duration“. In ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/omae2024-122486.
Der volle Inhalt der QuelleDesJardin, Paul E., Sheldon R. Tieszen, Timothy J. O’Hern und Andrew L. Gerhart. „Numerical Predictions and Experimental Measurements of the Near-Field of a Large Turbulent Helium Plume“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2080.
Der volle Inhalt der QuelleSantos, D. R., A. R. Fioravanti, V. E. Botechia und D. J. Schiozer. „Optimizing Well Control Strategies with IDLHC-MLR: A Machine Learning Approach to Address Geological Uncertainties and Reduce Simulations“. In Offshore Technology Conference Brasil. OTC, 2023. http://dx.doi.org/10.4043/32985-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "RMS simulations"
Reis, Evan. Seismic Performance of Single-Family Wood-Frame Houses: Comparing Analytical and Industry Catastrophe Models (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, Dezember 2020. http://dx.doi.org/10.55461/qmbu3779.
Der volle Inhalt der QuelleZhang, Zhonglong, Billy Johnson und Blair Greimann. HEC-RAS-RVSM (Riparian Vegetation Simulation Module). Engineer Research and Development Center (U.S.), Juni 2019. http://dx.doi.org/10.21079/11681/32864.
Der volle Inhalt der QuelleSteinbock, Thilo, und Klemens Kerssen. Evaluation on the capabilities of MATLAB Simulink’s Embedded Coder for rapid prototyping of micro-controller based control systems for switching converters. Universitatsbibliothek Kiel, März 2025. https://doi.org/10.38071/2025-00178-9.
Der volle Inhalt der QuelleMeot, F., V. Ptitsyn, V. Ranjbar und D. Rubin. Polarized e-bunch acceleration at Cornell RCS: Tentative tracking simulations. Office of Scientific and Technical Information (OSTI), Oktober 2017. http://dx.doi.org/10.2172/1408712.
Der volle Inhalt der QuelleLetcher, Theodore, Julie Parno, Zoe Courville, Lauren Farnsworth und Jason Olivier. A generalized photon-tracking approach to simulate spectral snow albedo and transmittance using X-ray microtomography and geometric optics. Engineer Research and Development Center (U.S.), Juni 2023. http://dx.doi.org/10.21079/11681/47122.
Der volle Inhalt der QuelleDepriest, Kendall. Radiation Transport Simulation of the Sulfur Counting System in the Radiation Metrology Laboratory (RML). Office of Scientific and Technical Information (OSTI), Mai 2021. http://dx.doi.org/10.2172/1787741.
Der volle Inhalt der QuelleChristie, Benjamin, Osama Ennasr und Garry Glaspell. Autonomous navigation and mapping in a simulated environment. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42006.
Der volle Inhalt der QuelleO'Brien, James G., Emily L. Barrett, Xiaoyuan Fan, Ruisheng Diao, Renke Huang und Qiuhua Huang. Adaptive RAS/SPS System Settings for Improving Grid Reliability and Asset Utilization through Predictive Simulation and Controls. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1580707.
Der volle Inhalt der QuelleCorum, Zachary, Ethan Cheng, Stanford Gibson und Travis Dahl. Optimization of reach-scale gravel nourishment on the Green River below Howard Hanson Dam, King County, Washington. Engineer Research and Development Center (U.S.), April 2022. http://dx.doi.org/10.21079/11681/43887.
Der volle Inhalt der QuelleGibson, Stanford, und James Crain. Modeling sediment concentrations during a drawdown reservoir flush : simulating the Fall Creek operations with HEC-RAS. Engineer Research and Development Center (U.S.), August 2019. http://dx.doi.org/10.21079/11681/33884.
Der volle Inhalt der Quelle