Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „RNA therapeutic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "RNA therapeutic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "RNA therapeutic"
Mahy, BWJ. „Therapeutic RNA?“ Reviews in Medical Virology 15, Nr. 6 (2005): 349–50. http://dx.doi.org/10.1002/rmv.485.
Der volle Inhalt der QuelleLiu, Xiang, Yu Zhang, Shurong Zhou, Lauren Dain, Lei Mei und Guizhi Zhu. „Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines“. Journal of Controlled Release 348 (August 2022): 84–94. http://dx.doi.org/10.1016/j.jconrel.2022.05.043.
Der volle Inhalt der QuelleEVERTS, SARAH. „RNA DISTRACTION IS THERAPEUTIC“. Chemical & Engineering News 87, Nr. 29 (20.07.2009): 15. http://dx.doi.org/10.1021/cen-v087n029.p015a.
Der volle Inhalt der QuellePoller, Wolfgang, Juliane Tank, Carsten Skurk und Martina Gast. „Cardiovascular RNA Interference Therapy“. Circulation Research 113, Nr. 5 (16.08.2013): 588–602. http://dx.doi.org/10.1161/circresaha.113.301056.
Der volle Inhalt der Quelle&NA;. „Therapeutic potential of RNA??interference“. Inpharma Weekly &NA;, Nr. 1411 (November 2003): 2. http://dx.doi.org/10.2165/00128413-200314110-00001.
Der volle Inhalt der QuelleStevenson, Mario. „Therapeutic Potential of RNA Interference“. New England Journal of Medicine 351, Nr. 17 (21.10.2004): 1772–77. http://dx.doi.org/10.1056/nejmra045004.
Der volle Inhalt der QuelleHan, Xuexiang, Michael J. Mitchell und Guangjun Nie. „Nanomaterials for Therapeutic RNA Delivery“. Matter 3, Nr. 6 (Dezember 2020): 1948–75. http://dx.doi.org/10.1016/j.matt.2020.09.020.
Der volle Inhalt der QuelleSioud, Mouldy, und Marianne Leirdal. „Therapeutic RNA and DNA enzymes“. Biochemical Pharmacology 60, Nr. 8 (Oktober 2000): 1023–26. http://dx.doi.org/10.1016/s0006-2952(00)00395-6.
Der volle Inhalt der QuelleNovina, C. D. „Therapeutic potential of RNA interference“. Biomedicine & Pharmacotherapy 58, Nr. 4 (Mai 2004): 270. http://dx.doi.org/10.1016/j.biopha.2002.12.001.
Der volle Inhalt der Quellevan Ommen, Gert-Jan B., und Annemieke Aartsma-Rus. „Advances in therapeutic RNA-targeting“. New Biotechnology 30, Nr. 3 (März 2013): 299–301. http://dx.doi.org/10.1016/j.nbt.2013.01.005.
Der volle Inhalt der QuelleDissertationen zum Thema "RNA therapeutic"
Kavitha, Siva. „RNA-based therapeutic approaches for FTDP-17“. Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/367651.
Der volle Inhalt der QuelleKavitha, Siva. „RNA-based therapeutic approaches for FTDP-17“. Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1552/1/PhD_thesis_Siva_K_June_2015.pdf.
Der volle Inhalt der QuelleWhite, Melanie Denise. „RNA interference as a therapeutic approach in prion disease“. Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1445182/.
Der volle Inhalt der QuelleWu, Connie Ph D. Massachusetts Institute of Technology. „Engineering periodic short hairpin RNA delivery systems for enhanced therapeutic efficacy“. Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121821.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
RNA interference (RNAi) presents a highly promising approach for cancer therapeutics via specific silencing of disease-implicated genes, but its clinical translation remains severely limited by barriers in delivering short interfering RNA (siRNA). Numerous delivery vehicles have been developed to protect siRNA from degradation, promote target cell uptake, and facilitate endosomal escape into the cytoplasm, where RNAi occurs. However, in vivo instability, low silencing efficiency, undesired toxicity, and immunogenicity remain challenges for current siRNA delivery systems, particularly as the low valency and high rigidity of siRNA make it difficult to condense into stable nanoparticles. Here we engineer the siRNA cargo to make it more amenable to stable encapsulation by using a polymeric form of siRNA, or periodic short hairpin RNA (p-shRNA), as well as design a biodegradable polycationic carrier for efficient in vivo delivery of p-shRNA.
Consisting of tens of linked siRNA repeats, p-shRNA is synthesized by the repeated action of T7 RNA polymerase around a circular DNA template. We first leverage molecular engineering design an open-ended p-shRNA structure that is efficiently processed inside cells into siRNAs, greatly enhancing its silencing potency. Furthermore, the much higher valency and flexibility of p-shRNA compared to siRNA enable more stable complexation with delivery materials. To exploit these advantages of p-shRNA, we optimize biodegradable polycations with hydrophobic regions that promote stable condensation and efficient intracellular release. Our approach unveils key design rules governing p-shRNA delivery, and we develop stabilized p-shRNA complexes that show in vivo therapeutic efficacy in a syngeneic melanoma mouse model. Finally, we extend our p-shRNA platform to act as a dual therapeutic agent, harnessing innate immune activation together with gene silencing.
By modulating the surface of the p-shRNA complexes with an anionic polypeptide, we dramatically enhance innate immune recognition of p-shRNA by pattern recognition receptors while maintaining high silencing efficiency. These dually acting complexes can target ovarian tumors in vivo and prolong survival in a syngeneic ovarian cancer mouse model. Our findings establish a potent, multifunctional RNAi platform that can potentially move RNAi therapeutics closer to clinical translation by addressing the delivery and in vivo efficacy challenges faced by current siRNA systems.
National Science Foundation Graduate Research Fellowshipgrant #1122374
Koch Institute Ludwig Center for Molecular Oncology Graduate Fellowship
Congressionally Directed Medical Research Program Ovarian Cancer Research Program Teal Innovator Award from the Department of Defense (13-1-0151)
by Connie Wu.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemical Engineering
BALESTRA, Dario. „Modified U1snRNAs as innovative therapeutic strategy for inherited coagulation factor deficiencies“. Doctoral thesis, Università degli studi di Ferrara, 2012. http://hdl.handle.net/11392/2388781.
Der volle Inhalt der QuelleAl-Mazedi, Maryam. „A therapeutic approach to chronic myeloid leukaemia using short hairpin RNA molecules“. Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/a-therapeutic-approach-to-chronic-myeloid-leukaemia-using-short-hairpin-rna-molecules(185139fb-ed9b-46d7-a5a8-04532c44640b).html.
Der volle Inhalt der QuelleJubair, Luqman Khaleel. „Next-Generation Cancer Therapies: The Therapeutic Potential of RNA-Directed Gene-Editing“. Thesis, Griffith University, 2018. http://hdl.handle.net/10072/382679.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Medical Science
Griffith Health
Full Text
Elmén, Joacim. „Nucleic acid based therapeutic approaches /“. Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-047-8/.
Der volle Inhalt der QuelleHong, Lingzi. „Act1-Mediated RNA Metabolism in IL-17-Driven Inflammatory Diseases“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case162673878106271.
Der volle Inhalt der QuelleChitiprolu, Maneka. „Novel Regulatory Mechanisms of Autophagy in Human Disease: Implications for the Development of Therapeutic Strategies“. Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38441.
Der volle Inhalt der QuelleBücher zum Thema "RNA therapeutic"
A, Mulligan James. MicroRNA: Expression, detection, and therapeutic strategies. New York: Nova Science, 2011.
Den vollen Inhalt der Quelle findenSioud, Mouldy. RNA interference: Challenges and therapeutic opportunities. New York: Humana Press, 2015.
Den vollen Inhalt der Quelle findenHiroshi, Takaku, und Yamamoto Naoki 1945-, Hrsg. RNAi therapeutics, 2006. Trivandrum, Kerala, India: Transworld Research Network, 2006.
Den vollen Inhalt der Quelle findenArbuthnot, Patrick, und Marc S. Weinberg. Applied RNAi: From fundamental research to therapeutic applications. Norfolk, UK: Caister Academic Press, 2014.
Den vollen Inhalt der Quelle findenRNA therapeutics: Function, design, and delivery. New York: Humana Press, 2010.
Den vollen Inhalt der Quelle findenYasko, Amy. Heal your body naturally: The power of RNA. [United States]: Matrix Development Pub., 2004.
Den vollen Inhalt der Quelle finden1947-, Scanlon Kevin J., Hrsg. Therapeutic applications of ribozymes. Totowa, N.J: Humana Press, 1998.
Den vollen Inhalt der Quelle findenTherapeutic applications of ribozymes and riboswitches: Methods and protocols. New York: Humana Press, 2014.
Den vollen Inhalt der Quelle findenThomas, Tuschl, Rossi John J und New York Academy of Sciences, Hrsg. Oligonucleotide therapeutics. Boston, Mass: Blackwell on behalf of the New York Academy of Sciences, 2006.
Den vollen Inhalt der Quelle finden1922-, Weiss Benjamin, Hrsg. Antisense oligodeoxynucleotides and antisense RNA: Novel pharmacological and therapeutic agents. Roca Raton, Fla: CRC Press, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "RNA therapeutic"
Kang, Moo Rim, Gongcheng Li, Tiejun Pan, Jin-Chun Xing und Long-Cheng Li. „Development of Therapeutic dsP21-322 for Cancer Treatment“. In RNA Activation, 217–29. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4310-9_16.
Der volle Inhalt der QuelleSioud, Mouldy. „RNA Interference: Mechanisms, Technical Challenges, and Therapeutic Opportunities“. In RNA Interference, 1–15. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1538-5_1.
Der volle Inhalt der QuelleIversen, Per Ole, und Mouldy Sioud. „Engineering Therapeutic Cancer Vaccines That Activate Antitumor Immunity“. In RNA Interference, 263–68. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1538-5_15.
Der volle Inhalt der QuellePierce, Jacob B., Haoyang Zhou, Viorel Simion und Mark W. Feinberg. „Long Noncoding RNAs as Therapeutic Targets“. In Long Noncoding RNA, 161–75. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92034-0_9.
Der volle Inhalt der QuelleSeth, Shaguna, Michael V. Templin, Gregory Severson und Oleksandr Baturevych. „A Potential Therapeutic for Pandemic Influenza Using RNA Interference“. In RNA Interference, 397–422. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-588-0_26.
Der volle Inhalt der QuelleGuha, Shalini, Priyanka Barman, Aruniti Manawa und Sukesh R. Bhaumik. „Nuclear Export of mRNAs with Disease Pathogenesis and Therapeutic Implications“. In RNA Technologies, 371–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08415-7_17.
Der volle Inhalt der QuelleCheng, Yi, Dong Zhang, Travis Hurst, Xiaoqin Zou, Paloma H. Giangrande und Shi-Jie Chen. „RNA Structural Modeling for Therapeutic Applications“. In RNA Nanotechnology and Therapeutics, 447–61. 2. Aufl. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003001560-47.
Der volle Inhalt der QuelleYoo, Ji Young, Balveen Kaur, Tae Jin Lee und Peixuan Guo. „MicroRNAs in Human Cancers and Therapeutic Applications“. In RNA Nanotechnology and Therapeutics, 529–42. 2. Aufl. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003001560-54.
Der volle Inhalt der QuelleSzymański, Maciej, und Jan Barciszewski. „Noncoding RNAs as Therapeutic Targets“. In RNA Technologies and Their Applications, 393–418. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12168-5_18.
Der volle Inhalt der QuelleAkaneya, Yukio. „A New Approach for Therapeutic Use by RNA Interference in the Brain“. In RNA Interference, 313–24. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-588-0_20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "RNA therapeutic"
Ke, Yonggang, DongMoon Shin und Georgia Chen. „Abstract 3635: RNA-based nanostructures for therapeutic siRNA delivery“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-3635.
Der volle Inhalt der QuelleKe, Yonggang, DongMoon Shin und Georgia Chen. „Abstract 3635: RNA-based nanostructures for therapeutic siRNA delivery“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-3635.
Der volle Inhalt der QuelleEndo-Takahashi, Yoko, Yoichi Negishi, Ryo Suzuki, Kazuo Maruyama, Yukihiko Aramaki, Yoichiro Matsumoto, Lawrence A. Crum und Gail Reinette ter Haar. „Novel siRNA-loaded Bubble Liposomes with Ultrasound Exposure for RNA Interference“. In 10TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND (ISTU 2010). AIP, 2011. http://dx.doi.org/10.1063/1.3607930.
Der volle Inhalt der QuelleLoeb, David M., Breelyn A. Wilky, Catherine Kim, Elizabeth Montgomery und Venu Raman. „Abstract A77: RNA helicase DDX3 – A novel therapeutic target in sarcoma“. In Abstracts: AACR Special Conference: Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; November 3-6, 2013; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.pedcan-a77.
Der volle Inhalt der QuelleHao, Liangliang, Justin Lo und Sangeeta Bhatia. „Abstract 5088: Tumor penetrating RNA delivery for therapeutic benefit of pancreatic cancer“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5088.
Der volle Inhalt der QuellePachera, E., A. Wunderlin, S. Assassi, G. Salazar, M. Frank-Bertoncelj, R. Dobrota, M. Brock et al. „OP0086 Long noncoding RNA H19X as a new therapeutic target for fibrosis“. In Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.4877.
Der volle Inhalt der QuelleWoo, C., N. Clark, A. Sarode, N. Kaushal, K. Tran, T. Efthymiou, J. Abysalh et al. „A Messenger RNA (mRNA)-Based Therapeutic Designed to Treat Primary Ciliary Dyskinesia“. In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a1138.
Der volle Inhalt der QuelleGoueli, Said A., und Kevin Hsiao. „Abstract 1162: Monitoring COVID-19 RNA methyltransferases activities for developing therapeutic drugs“. In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-1162.
Der volle Inhalt der QuelleGhazaly, Essam A., John Le Quesne, Dahai Jiang, Selanere L. Mangala, James Chettle, Cristian Rodriguez-Aguayo, Gabriel Lopez-Berestein et al. „Abstract B30: The RNA-binding protein LARP1 is a cancer therapeutic target“. In Abstracts: AACR Special Conference on Translational Control of Cancer: A New Frontier in Cancer Biology and Therapy; October 27-30, 2016; San Francisco, CA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.transcontrol16-b30.
Der volle Inhalt der QuelleMitra, Sheetal A., Anirban P. Mitra, Jonathan D. Buckley, William A. May, Philipp Kapranov, Robert J. Arceci und Timothy J. Triche. „Abstract A43: Therapeutic importance of a long noncoding RNA in Ewing sarcoma“. In Abstracts: AACR Special Conference: Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; November 3-6, 2013; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.pedcan-a43.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "RNA therapeutic"
Chu, Jimmy, Kathryn Black, Luis Santos und Steven Wall. The challenges of using RNA as a therapeutic or a gene-editing tool. Biophorum, November 2021. http://dx.doi.org/10.46220/2021cgt006.
Der volle Inhalt der QuelleARIZONA STATE UNIV TEMPE CANCER RESEARCH INST. Discovery and Development of Therapeutic Drugs Against Lethal Human RNA Viruses: A Multidisciplinary Assault. Fort Belvoir, VA: Defense Technical Information Center, März 1992. http://dx.doi.org/10.21236/ada251561.
Der volle Inhalt der QuellePettit, George R. Discovery and Development of Therapeutic Drugs against Lethal Human RNA Viruses: a Multidisciplinary Assault. Fort Belvoir, VA: Defense Technical Information Center, Juli 1991. http://dx.doi.org/10.21236/ada239742.
Der volle Inhalt der QuellePettit, George R. Discovery and Development of Therapeutic Drugs against Lethal Human RNA- Viruses: A Multidisciplinary Assault. Fort Belvoir, VA: Defense Technical Information Center, Februar 1990. http://dx.doi.org/10.21236/ada219393.
Der volle Inhalt der QuelleChen, Shuo. Anti-Androgen Receptor RNA Enzyme as a Novel Therapeutic Agent for Prostate Cancer In Vivo. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada462865.
Der volle Inhalt der QuelleChakraborty, Srijani. The Dawn of RNA Therapeutics. Spring Library, Dezember 2020. http://dx.doi.org/10.47496/sl.blog.19.
Der volle Inhalt der QuelleGiordano, Tony. Development of RNAi Libraries for Target Validation and Therapeutics. Fort Belvoir, VA: Defense Technical Information Center, März 2006. http://dx.doi.org/10.21236/ada452228.
Der volle Inhalt der QuelleMao, Hai-Quan. Nanoparticle Delivery of RNAi Therapeutics for Ocular Vesicant Injury. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada613316.
Der volle Inhalt der QuelleMoore, Melissa. Phase II - Procurement of State of the Art Research Equipment to Support Faculty Members with the RNA Therapeutics Institute, a component of the Advanced Therapeutics Cluster at the University of Massachusetts Medical School. Office of Scientific and Technical Information (OSTI), Oktober 2011. http://dx.doi.org/10.2172/1037882.
Der volle Inhalt der QuelleChen, Xiaole, Peng Wang, Yunquan Luo, Yi-Yu Lu, Wenjun Zhou, Mengdie Yang, Jian Chen, Zhi-Qiang Meng und Shi-Bing Su. Therapeutic Efficacy Evaluation and Underlying Mechanisms Prediction of Jianpi Liqi Decoction for Hepatocellular Carcinoma. Science Repository, September 2021. http://dx.doi.org/10.31487/j.jso.2021.02.04.sup.
Der volle Inhalt der Quelle