Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Roughness prediction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Roughness prediction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Roughness prediction"
Nalbant, Muammer, Hasan Gokkaya und İhsan Toktaş. „Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning“. Modelling and Simulation in Engineering 2007 (2007): 1–14. http://dx.doi.org/10.1155/2007/92717.
Der volle Inhalt der QuelleLin, Wan-Ju, Shih-Hsuan Lo, Hong-Tsu Young und Che-Lun Hung. „Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction Using Vibration Signal Analysis“. Applied Sciences 9, Nr. 7 (08.04.2019): 1462. http://dx.doi.org/10.3390/app9071462.
Der volle Inhalt der QuelleSaleh, A., D. W. Fryrear und J. D. Bilbro. „AERODYNAMIC ROUGHNESS PREDICTION FROM SOIL SURFACE ROUGHNESS MEASUREMENT“. Soil Science 162, Nr. 3 (März 1997): 205–10. http://dx.doi.org/10.1097/00010694-199703000-00006.
Der volle Inhalt der QuelleCai, Xiao Jiang, Z. Q. Liu, Q. C. Wang, Shu Han, Qing Long An und Ming Chen. „Surface Roughness Prediction in Turning of Free Machining Steel 1215 by Artificial Neural Network“. Advanced Materials Research 188 (März 2011): 535–41. http://dx.doi.org/10.4028/www.scientific.net/amr.188.535.
Der volle Inhalt der QuelleLi, Shilong, Xiaolei Yang und Yu Lv. „Predictive capability of the logarithmic law for roughness-modeled large-eddy simulation of turbulent channel flows with rough walls“. Physics of Fluids 34, Nr. 8 (August 2022): 085112. http://dx.doi.org/10.1063/5.0098611.
Der volle Inhalt der QuelleAlajmi, Mahdi S., und Abdullah M. Almeshal. „Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method“. Materials 13, Nr. 13 (04.07.2020): 2986. http://dx.doi.org/10.3390/ma13132986.
Der volle Inhalt der QuelleZeng, Shi, und Dechang Pi. „Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning“. Sensors 23, Nr. 10 (22.05.2023): 4969. http://dx.doi.org/10.3390/s23104969.
Der volle Inhalt der QuelleNg, J. J., Z. W. Zhong und T. I. Liu. „Prediction of Roughness Heights of Milled Surfaces for Product Quality Prediction and Tool Condition Monitoring“. Journal of Materials and Applications 8, Nr. 2 (15.11.2019): 97–104. http://dx.doi.org/10.32732/jma.2019.8.2.97.
Der volle Inhalt der QuelleZhang, Qi, Yuechao Pei, Yixin Shen, Xiaojun Wang, Jingqi Lai und Maohui Wang. „A New Perspective on Predicting Roughness of Discontinuity from Fractal Dimension D of Outcrops“. Fractal and Fractional 7, Nr. 7 (22.06.2023): 496. http://dx.doi.org/10.3390/fractalfract7070496.
Der volle Inhalt der QuelleGu, Jiali, und Pingxiang Cao. „Prediction of straight tooth milling of Scots pine wood by shank cutter based on neural net computations and regression analysis“. BioResources 17, Nr. 2 (04.02.2022): 2003–19. http://dx.doi.org/10.15376/biores.17.2.2003-2019.
Der volle Inhalt der QuelleDissertationen zum Thema "Roughness prediction"
Munoz-Escalona, Patricia. „Surface roughness prediction when milling with square inserts“. Thesis, University of Bath, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519033.
Der volle Inhalt der QuelleShauche, Vishwesh. „Health Assessment based In-process Surface Roughness Prediction System“. University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1298323430.
Der volle Inhalt der QuelleStaheli, Kimberlie. „Jacking Force Prediction: An Interface Friction Approach based on Pipe Surface Roughness“. Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07052006-203035/.
Der volle Inhalt der QuelleDr. J. David Frost, Committee Chair ; Dr. G. Wayne Clough, Committee Co-Chair ; Dr. William F. Marcuson III, Committee Member ; Dr. Paul W. Mayne, Committee Member ; Dr. Susan Burns, Committee Member.
Yamaguchi, Keiko. „Improved ice accretion prediction techniques based on experimental observations of surface roughness effects on heat transfer“. Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/14148.
Der volle Inhalt der QuelleSakthi, Gireesh. „WIND POWER PREDICTION MODEL BASED ON PUBLICLY AVAILABLE DATA: SENSITIVITY ANALYSIS ON ROUGHNESS AND PRODUCTION TREND“. Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-400462.
Der volle Inhalt der QuelleSrinivasan, Sriram. „Development of a Cost Oriented Grinding Strategy and Prediction of Post Grind Roughness using Improved Grinder Models“. Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78298.
Der volle Inhalt der QuelleMaster of Science
Celik, Kazim Arda. „Development Of A Methodology For Prediction Of Surface Roughness Of Curved Cavities Manufactured By 5-axes Cnc Milling“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608368/index.pdf.
Der volle Inhalt der QuelleCummings, Patrick. „Modeling the Locked-Wheel Skid Tester to Determine the Effect of Pavement Roughness on the International Friction Index“. Scholar Commons, 2010. https://scholarcommons.usf.edu/etd/1604.
Der volle Inhalt der QuelleMangin, Steven F. „Development of an Equation Independent of Manning's Coefficient n for Depth Prediction in Partially-Filled Circular Culverts“. Youngstown State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1284488143.
Der volle Inhalt der QuelleLevin, Ori. „Stability analysis and transition prediction of wall-bounded flows“. Licentiate thesis, KTH, Mechanics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1663.
Der volle Inhalt der QuelleDisturbances introduced in wall-bounded .ows can grow andlead to transition from laminar to turbulent .ow. In order toreduce losses or enhance mixing in energy systems, afundamental understanding of the .ow stability is important. Inlow disturbance environments, the typical path to transition isan exponential growth of modal waves. On the other hand, inlarge disturbance environments, such as in the presence of highlevels of free-stream turbulence or surface roughness,algebraic growth of non-modal streaks can lead to transition.In the present work, the stability of wall-bounded .ows isinvestigated by means of linear stability equations valid bothfor the exponential and algebraic growth scenario. Anadjoint-based optimization technique is used to optimize thealgebraic growth of streaks. The exponential growth of waves ismaximized in the sense that the envelope of the most ampli.edeigenmode is calculated. Two wall-bounded .ows areinvestigated, the FalknerSkan boundary layer subject tofavorable, adverse and zero pressure gradients and the Blasiuswall jet. For the FalknerSkan boundary layer, theoptimization is carried out over the initial streamwiselocation as well as the spanwise wave number and the angularfrequency. Furthermore, a uni.ed transition-prediction methodbased on available experimental data is suggested. The Blasiuswall jet is matched to the measured .ow in an experimentalwall-jet facility. Linear stability analysis with respect tothe growth of two-dimensional waves and streamwise streaks areperformed and compared to the experiments. The nonlinearinteraction of introduced waves and streaks and the .owstructures preceding the .ow breakdown are investigated bymeans of direct numerical simulations.
Descriptors: Boundary layer, wall jet, algebraic growth,exponential growth, lift-up e.ect, streamwise streaks,Tollmien-Schlichting waves, free-stream turbulence, roughnesselement, transition prediction, Parabolized StabilityEquations, Direct Numerical Simulation.
Bücher zum Thema "Roughness prediction"
Fox, Christopher Gene. Description, analysis and predictions of sea floor roughness using spectral models. Bay St. Louis, Miss: Naval Oceanographic Office, 1985.
Den vollen Inhalt der Quelle findenKurlanda, Marian Henryk. Predicting roughness progression of asphalt overlays: Joint C-SHRP/Alberta Bayesian application. Ottawa: Canadian Strategic Highway Research Program, Transportation Association of Canada, 1995.
Den vollen Inhalt der Quelle findenChan, Johnny C. L. Physical Mechanisms Responsible for Track Changes and Rainfall Distributions Associated with Tropical Cyclone Landfall. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780190676889.013.16.
Der volle Inhalt der QuelleChan, Johnny C. L. Physical Mechanisms Responsible for Track Changes and Rainfall Distributions Associated with Tropical Cyclone Landfall. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780190699420.013.16.
Der volle Inhalt der QuelleMcAdams, Stephen, und Bruno L. Giordano. The perception of musical timbre. Herausgegeben von Susan Hallam, Ian Cross und Michael Thaut. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199298457.013.0007.
Der volle Inhalt der QuelleBuchteile zum Thema "Roughness prediction"
Trung, Do Duc, Nhu Tung Nguyen, Hoang Tien Dung, Nguyen Van Thien, Tran Thi Hong, Tran Ngoc Giang, Nguyen Thanh Tu und Le Xuan Hung. „A Study on Prediction of Grinding Surface Roughness“. In Advances in Engineering Research and Application, 102–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64719-3_13.
Der volle Inhalt der QuelleSreekantan, P. G., und G. V. Ramana. „Roughness based prediction of geofoam interfaces with concrete“. In Geosynthetics: Leading the Way to a Resilient Planet, 580–85. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003386889-61.
Der volle Inhalt der QuelleYan, Tingxu, Huiping Zhu, Xudong Liu, Xu Tu, Muran Qi, Yifeng Wang und Xiaobo Li. „Wetting Behavior of LBE on 316L and T91 Surfaces with Different Roughness“. In Springer Proceedings in Physics, 468–79. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_41.
Der volle Inhalt der QuelleTrung, Do Duc, Nguyen Nhu Tung, Nguyen Hong Son, Tran Thi Hong, Nguyen Van Cuong, Vu Nhu Nguyet und Ngoc Pi Vu. „Prediction of Surface Roughness in Turning with Diamond Insert“. In Advances in Engineering Research and Application, 607–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37497-6_69.
Der volle Inhalt der QuelleChen, Ying, Yanhong Sun, Han Lin und Bing Zhang. „Prediction Model of Milling Surface Roughness Based on Genetic Algorithms“. In Advances in Intelligent Systems and Computing, 1315–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15235-2_179.
Der volle Inhalt der QuelleIbrahim, Musa Alhaji, und Yusuf Şahin. „Surface Roughness Modelling and Prediction Using Artificial Intelligence Based Models“. In Advances in Intelligent Systems and Computing, 33–40. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-35249-3_3.
Der volle Inhalt der QuelleDing, Ning, Long Shan Wang und Guang Fu Li. „Study of Intelligent Prediction Control of Surface Roughness in Grinding“. In Advances in Abrasive Technology IX, 93–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-416-2.93.
Der volle Inhalt der QuelleOsuri, Krishna K., U. C. Mohanty und A. Routray. „Role of Surface Roughness Length on Simulation of Cyclone Aila“. In Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change, 255–62. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7720-0_22.
Der volle Inhalt der QuelleKumar, M. A. Vinod. „Surface Roughness Prediction Using ANFIS and Validation with Advanced Regression Algorithms“. In Advances in Intelligent Systems and Computing, 238–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51156-2_29.
Der volle Inhalt der QuelleTripathi, Akshay, und Rohit Singla. „Surface Roughness Prediction of 3D Printed Surface Using Artificial Neural Networks“. In Lecture Notes in Mechanical Engineering, 109–20. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9956-9_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Roughness prediction"
Wu, Dazhong, Yupeng Wei und Janis Terpenny. „Surface Roughness Prediction in Additive Manufacturing Using Machine Learning“. In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6501.
Der volle Inhalt der QuelleRami´rez, M. de J., M. Correa, C. Rodri´guez und J. R. Alique. „Surface Roughness Modeling Based on Surface Roughness Feature Concept for High Speed Machining“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82256.
Der volle Inhalt der Quelle„Roughness Prediction For FDM Produced Surfaces“. In International Conference Recent treads in Engineering & Technology. International Institute of Engineers, 2014. http://dx.doi.org/10.15242/iie.e0214527.
Der volle Inhalt der QuelleZhang, Dingtong, und Ning Ding. „Surface Roughness Intelligent Prediction on Grinding“. In 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ic3me-15.2015.415.
Der volle Inhalt der QuelleAgarwal, Sanjay, und P. Venkateswara Rao. „Surface Roughness Prediction Model for Ceramic Grinding“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79180.
Der volle Inhalt der QuelleHanson, David, und Michael Kinzel. „An Improved CFD Approach for Ice-Accretion Prediction Using the Discrete Element Roughness Method“. In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69365.
Der volle Inhalt der QuelleWang, Xin, und Emil M. Petriu. „Neural fractal prediction of three dimensional surface roughness“. In 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA). IEEE, 2011. http://dx.doi.org/10.1109/cimsa.2011.6059937.
Der volle Inhalt der QuelleBeaugendre, Heloise, und Francois Morency. „FENSAP-ICE: Roughness Effects on Ice Accretion Prediction“. In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1222.
Der volle Inhalt der QuelleTezok, Fatih, Fassi Kafyeke und Tuncer Cebeci. „Prediction of airfoil performance with leading edge roughness“. In AIAA and SAE, 1998 World Aviation Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-5544.
Der volle Inhalt der QuelleAlexandrov, Sergei, Ken-ichi Manabe und Tsuyoshi Furushima. „Free Surface Roughness Prediction in Bending Under Tension“. In THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES (NUMISHEET 2011). AIP, 2011. http://dx.doi.org/10.1063/1.3623735.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Roughness prediction"
Taylor, R. P., und B. K. Hodge. Validated heat-transfer and pressure-drop prediction methods based on the discrete element method: Phase 1, Three-dimensiional roughness. Office of Scientific and Technical Information (OSTI), Februar 1992. http://dx.doi.org/10.2172/10154300.
Der volle Inhalt der QuelleTaylor, R. P., und B. K. Hodge. Validated heat-transfer and pressure-drop prediction methods based on the discrete element method: Phase 1, Three-dimensiional roughness. Office of Scientific and Technical Information (OSTI), Februar 1992. http://dx.doi.org/10.2172/5096745.
Der volle Inhalt der QuelleJames, C. A., B. K. Hodge und R. P. Taylor. Validated heat-transfer and pressure-drop prediction methods based on the discrete-element method: Phase 2, two-dimensional rib roughness. Office of Scientific and Technical Information (OSTI), Mai 1993. http://dx.doi.org/10.2172/10192770.
Der volle Inhalt der QuelleThegeya, Aaron, Thomas Mitterling, Arturo Martinez Jr, Joseph Albert Niño Bulan, Ron Lester Durante und Jayzon Mag-atas. Application of Machine Learning Algorithms on Satellite Imagery for Road Quality Monitoring: An Alternative Approach to Road Quality Surveys. Asian Development Bank, Dezember 2022. http://dx.doi.org/10.22617/wps220587-2.
Der volle Inhalt der QuelleAl-Qadi, Imad, Jaime Hernandez, Angeli Jayme, Mojtaba Ziyadi, Erman Gungor, Seunggu Kang, John Harvey et al. The Impact of Wide-Base Tires on Pavement—A National Study. Illinois Center for Transportation, Oktober 2021. http://dx.doi.org/10.36501/0197-9191/21-035.
Der volle Inhalt der QuelleMichaels, Michelle, Theodore Letcher, Sandra LeGrand, Nicholas Webb und Justin Putnam. Implementation of an albedo-based drag partition into the WRF-Chem v4.1 AFWA dust emission module. Engineer Research and Development Center (U.S.), Januar 2021. http://dx.doi.org/10.21079/11681/42782.
Der volle Inhalt der QuelleLeGrand, Sandra, Theodore Letcher, Gregory Okin, Nicholas Webb, Alex Gallagher, Saroj Dhital, Taylor Hodgdon, Nancy Ziegler und Michelle Michaels. Application of a satellite-retrieved sheltering parameterization (v1.0) for dust event simulation with WRF-Chem v4.1. Engineer Research and Development Center (U.S.), Mai 2023. http://dx.doi.org/10.21079/11681/47116.
Der volle Inhalt der QuelleZiegler, Nancy, Nicholas Webb, Adrian Chappell und Sandra LeGrand. Scale invariance of albedo-based wind friction velocity. Engineer Research and Development Center (U.S.), Mai 2021. http://dx.doi.org/10.21079/11681/40499.
Der volle Inhalt der QuelleZiegler, Nancy, Nicholas Webb, John Gillies, Brandon Edward, George Nikolich, Justin Van Zee, Brad Cooper, Dawn Browning, Ericha Courtright und Sandra LeGrand. Plant phenology drives seasonal changes in shear stress partitioning in a semi-arid rangeland. Engineer Research and Development Center (U.S.), September 2023. http://dx.doi.org/10.21079/11681/47680.
Der volle Inhalt der QuelleAgassi, Menahem, Michael J. Singer, Eyal Ben-Dor, Naftaly Goldshleger, Donald Rundquist, Dan Blumberg und Yoram Benyamini. Developing Remote Sensing Based-Techniques for the Evaluation of Soil Infiltration Rate and Surface Roughness. United States Department of Agriculture, November 2001. http://dx.doi.org/10.32747/2001.7586479.bard.
Der volle Inhalt der Quelle