Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Run-And-Tumble particles.

Zeitschriftenartikel zum Thema „Run-And-Tumble particles“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Run-And-Tumble particles" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Paoluzzi, Matteo, Andrea Puglisi, and Luca Angelani. "Entropy Production of Run-and-Tumble Particles." Entropy 26, no. 6 (2024): 443. http://dx.doi.org/10.3390/e26060443.

Der volle Inhalt der Quelle
Annotation:
We analyze the entropy production in run-and-tumble models. After presenting the general formalism in the framework of the Fokker–Planck equations in one space dimension, we derive some known exact results in simple physical situations (free run-and-tumble particles and harmonic confinement). We then extend the calculation to the case of anisotropic motion (different speeds and tumbling rates for right- and left-oriented particles), obtaining exact expressions of the entropy production rate. We conclude by discussing the general case of heterogeneous run-and-tumble motion described by space-de
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Redig, F., and H. van Wiechen. "Stationary Fluctuations of Run-and-Tumble Particles." Markov Processes And Related Fields 30, no. 2024 №2 (30) (2024): 297–331. http://dx.doi.org/10.61102/1024-2953-mprf.2024.30.2.003.

Der volle Inhalt der Quelle
Annotation:
We study the stationary fluctuations of independent run-and-tumble particles. We prove that the joint densities of particles with given internal state converges to an infinite dimensional Ornstein-Uhlenbeck process. We also consider an interacting case, where the particles are subjected to exclusion. We then study the fluctuations of the total density, which is a non-Markovian Gaussian process, and obtain its covariance in closed form. By considering small noise limits of this non-Markovian Gaussian process, we obtain in a concrete example a large deviation rate function containing memory term
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Paoluzzi, M., R. Di Leonardo, and L. Angelani. "Run-and-tumble particles in speckle fields." Journal of Physics: Condensed Matter 26, no. 37 (2014): 375101. http://dx.doi.org/10.1088/0953-8984/26/37/375101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Solon, A. P., M. E. Cates, and J. Tailleur. "Active brownian particles and run-and-tumble particles: A comparative study." European Physical Journal Special Topics 224, no. 7 (2015): 1231–62. http://dx.doi.org/10.1140/epjst/e2015-02457-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Martinez, Raul, Francisco Alarcon, Juan Luis Aragones, and Chantal Valeriani. "Trapping flocking particles with asymmetric obstacles." Soft Matter 16, no. 20 (2020): 4739–45. http://dx.doi.org/10.1039/c9sm02427a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gutiérrez, C. Miguel Barriuso, Christian Vanhille-Campos, Francisco Alarcón, Ignacio Pagonabarraga, Ricardo Brito, and Chantal Valeriani. "Collective motion of run-and-tumble repulsive and attractive particles in one-dimensional systems." Soft Matter 17, no. 46 (2021): 10479–91. http://dx.doi.org/10.1039/d1sm01006a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Peruani, Fernando, and Gustavo J. Sibona. "Reaction processes among self-propelled particles." Soft Matter 15, no. 3 (2019): 497–503. http://dx.doi.org/10.1039/c8sm01502c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bijnens, Bram, and Christian Maes. "Pushing run-and-tumble particles through a rugged channel." Journal of Statistical Mechanics: Theory and Experiment 2021, no. 3 (2021): 033206. http://dx.doi.org/10.1088/1742-5468/abe29e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Singh, Chamkor. "Correction: Guided run-and-tumble active particles: wall accumulation and preferential deposition." Soft Matter 18, no. 3 (2022): 684. http://dx.doi.org/10.1039/d1sm90221k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Elgeti, Jens, and Gerhard Gompper. "Run-and-tumble dynamics of self-propelled particles in confinement." EPL (Europhysics Letters) 109, no. 5 (2015): 58003. http://dx.doi.org/10.1209/0295-5075/109/58003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Zhang, Ziluo, and Gunnar Pruessner. "Field theory of free run and tumble particles in d dimensions." Journal of Physics A: Mathematical and Theoretical 55, no. 4 (2022): 045204. http://dx.doi.org/10.1088/1751-8121/ac37e6.

Der volle Inhalt der Quelle
Annotation:
Abstract In this work, Doi–Peliti field theory is used to describe the motion of free run and tumble particles in arbitrary dimensions. After deriving action and propagators, the mean squared displacement and the corresponding entropy production at stationarity are calculated in this framework. We further derive the field theory of free active Brownian particles in two dimensions for comparison.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Mano, Tomoyuki, Jean-Baptiste Delfau, Junichiro Iwasawa, and Masaki Sano. "Optimal run-and-tumble–based transportation of a Janus particle with active steering." Proceedings of the National Academy of Sciences 114, no. 13 (2017): E2580—E2589. http://dx.doi.org/10.1073/pnas.1616013114.

Der volle Inhalt der Quelle
Annotation:
Although making artificial micrometric swimmers has been made possible by using various propulsion mechanisms, guiding their motion in the presence of thermal fluctuations still remains a great challenge. Such a task is essential in biological systems, which present a number of intriguing solutions that are robust against noisy environmental conditions as well as variability in individual genetic makeup. Using synthetic Janus particles driven by an electric field, we present a feedback-based particle-guiding method quite analogous to the “run-and-tumbling” behavior of Escherichia coli but with
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

de Pirey, Thibaut Arnoulx, and Frédéric van Wijland. "A run-and-tumble particle around a spherical obstacle: the steady-state distribution far-from-equilibrium." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 9 (2023): 093202. http://dx.doi.org/10.1088/1742-5468/ace42d.

Der volle Inhalt der Quelle
Annotation:
Abstract We investigate the steady-state distribution function of a run-and-tumble particle (RTP) evolving around a repulsive hard spherical obstacle. We demonstrate that the well-documented activity-induced attraction translates into a delta-peak accumulation at the obstacle’s surface accompanied by an algebraic divergence of the density profile close to the obstacle. We obtain the full form of the distribution function in the regime where the typical distance run by the particle between two consecutive tumbles is much larger than the obstacle’s size. This finding provides an expression for t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Grange, Pascal, and Xueqi Yao. "Run-and-tumble particles on a line with a fertile site." Journal of Physics A: Mathematical and Theoretical 54, no. 32 (2021): 325007. http://dx.doi.org/10.1088/1751-8121/ac0ebe.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Bertrand, Thibault, Pierre Illien, Olivier Bénichou, and Raphaël Voituriez. "Dynamics of run-and-tumble particles in dense single-file systems." New Journal of Physics 20, no. 11 (2018): 113045. http://dx.doi.org/10.1088/1367-2630/aaef6f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Santra, Ion, Urna Basu, and Sanjib Sabhapandit. "Run-and-tumble particles in two dimensions under stochastic resetting conditions." Journal of Statistical Mechanics: Theory and Experiment 2020, no. 11 (2020): 113206. http://dx.doi.org/10.1088/1742-5468/abc7b7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Santra, Ion, Urna Basu, and Sanjib Sabhapandit. "Long time behavior of run-and-tumble particles in two dimensions." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 3 (2023): 033203. http://dx.doi.org/10.1088/1742-5468/acbc22.

Der volle Inhalt der Quelle
Annotation:
Abstract We study the long-time asymptotic behavior of the position distribution of a run-and-tumble particle (RTP) in two dimensions in the presence of translational diffusion and show that the distribution at a time t can be expressed as a perturbative series in ( γ t ) − 1 , where γ −1 is the persistence time of the RTP. We show that the higher order corrections to the leading order Gaussian distribution generically satisfy an inhomogeneous diffusion equation where the source term depends on the previous order solutions. The explicit solution of the inhomogeneous equation requires the posit
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Derivaux, Jean-François, Robert L. Jack, and Michael E. Cates. "Active–passive mixtures with bulk loading: a minimal active engine in one dimension." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 8 (2023): 083212. http://dx.doi.org/10.1088/1742-5468/acecfa.

Der volle Inhalt der Quelle
Annotation:
Abstract We study a one-dimensional mixture of active (run-and-tumble) particles and passive (Brownian) particles, with single-file constraint, in a sawtooth potential. The active particles experience a ratchet effect and this generates a current, which can push passive particles against an applied load. The resulting system operates as an active engine. Using numerical simulations, we analyse the efficiency of this engine and we discuss how it can be optimised. Efficient operation occurs when the active particles self-organise into teams, which can push the passive ones against large loads by
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Das, Arghya, Abhishek Dhar, and Anupam Kundu. "Gap statistics of two interacting run and tumble particles in one dimension." Journal of Physics A: Mathematical and Theoretical 53, no. 34 (2020): 345003. http://dx.doi.org/10.1088/1751-8121/ab9cf3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Put, Stefanie, Jonas Berx, and Carlo Vanderzande. "Non-Gaussian anomalous dynamics in systems of interacting run-and-tumble particles." Journal of Statistical Mechanics: Theory and Experiment 2019, no. 12 (2019): 123205. http://dx.doi.org/10.1088/1742-5468/ab4e90.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Angelani, Luca. "Run-and-tumble particles, telegrapher’s equation and absorption problems with partially reflecting boundaries." Journal of Physics A: Mathematical and Theoretical 48, no. 49 (2015): 495003. http://dx.doi.org/10.1088/1751-8113/48/49/495003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Cates, M. E., and J. Tailleur. "When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation." EPL (Europhysics Letters) 101, no. 2 (2013): 20010. http://dx.doi.org/10.1209/0295-5075/101/20010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Mallmin, Emil, Richard A. Blythe, and Martin R. Evans. "Exact spectral solution of two interacting run-and-tumble particles on a ring lattice." Journal of Statistical Mechanics: Theory and Experiment 2019, no. 1 (2019): 013204. http://dx.doi.org/10.1088/1742-5468/aaf631.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Banerjee, Tirthankar, Robert L. Jack, and Michael E. Cates. "Tracer dynamics in one dimensional gases of active or passive particles." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 1 (2022): 013209. http://dx.doi.org/10.1088/1742-5468/ac4801.

Der volle Inhalt der Quelle
Annotation:
Abstract We consider one-dimensional systems comprising either active run-and-tumble particles (RTPs) or passive Brownian random walkers. These particles are either noninteracting or have hardcore exclusions. We study the dynamics of a single tracer particle embedded in such a system—this tracer may be either active or passive, with hardcore exclusion from environmental particles. In an active hardcore environment, both active and passive tracers show long-time subdiffusion: displacements scale as t 1/4 with a density-dependent prefactor that is independent of tracer type, and differs from the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Khodabandehlou, Faezeh, and Christian Maes. "Local detailed balance for active particle models." Journal of Statistical Mechanics: Theory and Experiment 2024, no. 6 (2024): 063205. http://dx.doi.org/10.1088/1742-5468/ad5435.

Der volle Inhalt der Quelle
Annotation:
Abstract Starting from a Huxley-type model for an agitated vibrational mode, we propose an embedding of standard active particle models in terms of two-temperature processes. One temperature refers to an ambient thermal bath, and the other temperature effectively describes ‘hot spots,’ i.e. systems with few degrees of freedom showing important population homogenization or even inversion of energy levels as a result of activation. That setup admits to quantitatively specifying the resulting nonequilibrium driving, rendering local detailed balance to active particle models, and making easy conta
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Derivaux, Jean-François, Robert L. Jack, and Michael E. Cates. "Rectification in a mixture of active and passive particles subject to a ratchet potential." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 4 (2022): 043203. http://dx.doi.org/10.1088/1742-5468/ac601f.

Der volle Inhalt der Quelle
Annotation:
Abstract We study by simulation a mixture of active (run-and-tumble) and passive (Brownian) particles with repulsive exclusion interactions in one dimension, subject to a ratchet (smoothed sawtooth) potential. Such a potential is known to rectify active particles at one-body level, creating a net current in the ‘easy direction’. This is the direction in which one encounters the lower maximum force en route to the top of a potential barrier. The exclusion constraint results in single-file motion, so the mean velocities of active and passive particles are identical; we study the effects of activ
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Derivaux, Jean-François, Robert L. Jack, and Michael E. Cates. "Rectification in a mixture of active and passive particles subject to a ratchet potential." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 4 (2022): 043203. http://dx.doi.org/10.1088/1742-5468/ac601f.

Der volle Inhalt der Quelle
Annotation:
Abstract We study by simulation a mixture of active (run-and-tumble) and passive (Brownian) particles with repulsive exclusion interactions in one dimension, subject to a ratchet (smoothed sawtooth) potential. Such a potential is known to rectify active particles at one-body level, creating a net current in the ‘easy direction’. This is the direction in which one encounters the lower maximum force en route to the top of a potential barrier. The exclusion constraint results in single-file motion, so the mean velocities of active and passive particles are identical; we study the effects of activ
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Mathijssen, A. J. T. M., D. O. Pushkin, and J. M. Yeomans. "Tracer trajectories and displacement due to a micro-swimmer near a surface." Journal of Fluid Mechanics 773 (May 27, 2015): 498–519. http://dx.doi.org/10.1017/jfm.2015.269.

Der volle Inhalt der Quelle
Annotation:
We study tracer particle transport due to flows created by a self-propelled micro-swimmer, such as a swimming bacterium, alga or a microscopic artificial swimmer. Recent theoretical work has shown that as a swimmer moves in the fluid bulk along an infinite straight path, tracer particles far from its path perform closed loops, whereas those close to the swimmer are entrained by its motion. However, in biologically and technologically important cases tracer transport is significantly altered for swimmers that move in a run-and-tumble fashion with a finite persistence length, and/or in the prese
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Krishnamurthy, Deepak, and Ganesh Subramanian. "Collective motion in a suspension of micro-swimmers that run-and-tumble and rotary diffuse." Journal of Fluid Mechanics 781 (September 28, 2015): 422–66. http://dx.doi.org/10.1017/jfm.2015.473.

Der volle Inhalt der Quelle
Annotation:
Recent experiments have shown that suspensions of swimming micro-organisms are characterized by complex dynamics involving enhanced swimming speeds, large-scale correlated motions and enhanced diffusivities of embedded tracer particles. Understanding this dynamics is of fundamental interest and also has relevance to biological systems. The observed collective dynamics has been interpreted as the onset of a hydrodynamic instability, of the quiescent isotropic state of pushers, swimmers with extensile force dipoles, above a critical threshold proportional to the swimmer concentration. In this wo
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Ray, Chandraniva Guha, Indranil Mukherjee, and P. K. Mohanty. "How motility affects Ising transitions." Journal of Statistical Mechanics: Theory and Experiment 2024, no. 9 (2024): 093207. http://dx.doi.org/10.1088/1742-5468/ad685b.

Der volle Inhalt der Quelle
Annotation:
Abstract We study a lattice gas (LG) model of hard-core particles on a square lattice experiencing nearest neighbour attraction J. Each particle has an internal orientation, independent of the others, that point towards one of the four nearest neighbour and it can move to the neighbouring site along that direction with the usual metropolis rate if the target site is vacant. The internal orientation of the particle can also change to any of the other three with a constant rate ω . The dynamics of the model in ω → ∞ reduces to that of the LG which exhibits a phase separation transition at partic
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Sandoval, Mario, Navaneeth K. Marath, Ganesh Subramanian, and Eric Lauga. "Stochastic dynamics of active swimmers in linear flows." Journal of Fluid Mechanics 742 (February 21, 2014): 50–70. http://dx.doi.org/10.1017/jfm.2013.651.

Der volle Inhalt der Quelle
Annotation:
AbstractMost classical work on the hydrodynamics of low-Reynolds-number swimming addresses deterministic locomotion in quiescent environments. Thermal fluctuations in fluids are known to lead to a Brownian loss of the swimming direction, resulting in a transition from short-time ballistic dynamics to effective long-time diffusion. As most cells or synthetic swimmers are immersed in external flows, we consider theoretically in this paper the stochastic dynamics of a model active particle (a self-propelled sphere) in a steady general linear flow. The stochasticity arises both from translational
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Tjhung, Elsen, Michael E. Cates, and Davide Marenduzzo. "Contractile and chiral activities codetermine the helicity of swimming droplet trajectories." Proceedings of the National Academy of Sciences 114, no. 18 (2017): 4631–36. http://dx.doi.org/10.1073/pnas.1619960114.

Der volle Inhalt der Quelle
Annotation:
Active fluids are a class of nonequilibrium systems where energy is injected into the system continuously by the constituent particles themselves. Many examples, such as bacterial suspensions and actomyosin networks, are intrinsically chiral at a local scale, so that their activity involves torque dipoles alongside the force dipoles usually considered. Although many aspects of active fluids have been studied, the effects of chirality on them are much less known. Here, we study by computer simulation the dynamics of an unstructured droplet of chiral active fluid in three dimensions. Our model c
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Son, Kwangmin, Filippo Menolascina, and Roman Stocker. "Speed-dependent chemotactic precision in marine bacteria." Proceedings of the National Academy of Sciences 113, no. 31 (2016): 8624–29. http://dx.doi.org/10.1073/pnas.1602307113.

Der volle Inhalt der Quelle
Annotation:
Chemotaxis underpins important ecological processes in marine bacteria, from the association with primary producers to the colonization of particles and hosts. Marine bacteria often swim with a single flagellum at high speeds, alternating “runs” with either 180° reversals or ∼90° “flicks,” the latter resulting from a buckling instability of the flagellum. These adaptations diverge from Escherichia coli’s classic run-and-tumble motility, yet how they relate to the strong and rapid chemotaxis characteristic of marine bacteria has remained unknown. We investigated the relationship between swimmin
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Evans, Martin R., and Satya N. Majumdar. "Run and tumble particle under resetting: a renewal approach." Journal of Physics A: Mathematical and Theoretical 51, no. 47 (2018): 475003. http://dx.doi.org/10.1088/1751-8121/aae74e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Bressloff, Paul C. "Encounter-based model of a run-and-tumble particle." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 11 (2022): 113206. http://dx.doi.org/10.1088/1742-5468/aca0ed.

Der volle Inhalt der Quelle
Annotation:
Abstract In this paper we extend the encounter-based model of diffusion-mediated surface absorption to the case of an unbiased run-and-tumble particle (RTP) confined to a finite interval [0, L] and switching between two constant velocity states ±v at a rate α. The encounter-based formalism is motivated by the observation that various surface-based reactions are better modeled in terms of a reactivity that is a function of the amount of time that a particle spends in a neighborhood of an absorbing surface, which is specified by a functional known as the boundary local time. The effects of surfa
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Singh, Prashant, Sanjib Sabhapandit, and Anupam Kundu. "Run-and-tumble particle in inhomogeneous media in one dimension." Journal of Statistical Mechanics: Theory and Experiment 2020, no. 8 (2020): 083207. http://dx.doi.org/10.1088/1742-5468/aba7b1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Chen, Yen-Fu, Zhengjia Wang, Kang-Ching Chu, Hsuan-Yi Chen, Yu-Jane Sheng, and Heng-Kwong Tsao. "Hydrodynamic interaction induced breakdown of the state properties of active fluids." Soft Matter 14, no. 25 (2018): 5319–26. http://dx.doi.org/10.1039/c8sm00881g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Singh, Prashant, and Anupam Kundu. "Generalised ‘Arcsine’ laws for run-and-tumble particle in one dimension." Journal of Statistical Mechanics: Theory and Experiment 2019, no. 8 (2019): 083205. http://dx.doi.org/10.1088/1742-5468/ab3283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Peng, Ying-Shuo, Yu-Jane Sheng, and Heng-Kwong Tsao. "Partition of nanoswimmers between two immiscible phases: a soft and penetrable boundary." Soft Matter 16, no. 21 (2020): 5054–61. http://dx.doi.org/10.1039/d0sm00298d.

Der volle Inhalt der Quelle
Annotation:
The behavior of run-and-tumble nanoswimmers which can self-propel in two immiscible liquids such as water–oil systems and are able to cross the interface is investigated by dissipative particle dynamics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Angelani, Luca. "Run-and-tumble motion in trapping environments." Physica Scripta, November 9, 2023. http://dx.doi.org/10.1088/1402-4896/ad0b4e.

Der volle Inhalt der Quelle
Annotation:
Abstract Complex or hostile environments can sometimes inhibit the movement capabilities of diffusive particles or active swimmers, who may thus become stuck in fixed positions. This occurs, for example, in the adhesion of bacteria to surfaces at the initial stage of biofilm formation. Here we analyze the dynamics of active particles in the presence of trapping regions, where irreversible particle immobilization occurs at a fixed rate. By solving the kinetic equations for run-and-tumble motion in one space dimension, we give expressions for probability distribution functions, focusing on stati
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Anchutkin, Gordei, Frank Cichos, and Viktor Holubec. "Run-and-tumble motion of ellipsoidal microswimmers." Physical Review Research 6, no. 4 (2024). http://dx.doi.org/10.1103/physrevresearch.6.043101.

Der volle Inhalt der Quelle
Annotation:
A hallmark of bacteria is their so-called “run-and-tumble” motion and its variants, consisting of a sequence of linear directed “runs” and distinct rotation events that constantly alternate due to biochemical feedback. It plays a crucial role in the ability of bacteria to move through chemical gradients and has inspired a fundamental active particle model. Nevertheless, synthetic active particles generally do not exhibit run-and-tumble motion but rather active Brownian motion. We show in experiments that ellipsoidal thermophoretic Janus particles, propelling along their short axis, can yield r
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Loewe, Benjamin, Timofey Kozhukhov, and Tyler Nathan Shendruk. "Invitation to contribute to Soft Matter Emerging Investigator Series Anisotropic run-and-tumble-turn dynamics." Soft Matter, 2024. http://dx.doi.org/10.1039/d3sm00589e.

Der volle Inhalt der Quelle
Annotation:
Run-and-tumble processes successfully model several living systems. While studies have typically focused on particles with isotropic tumbles, recent examples exhibit “tumble-turns", in which particles undergo 90° tumbles and so possess...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Maes, Christian, Kasper Meerts, and Ward Struyve. "Diffraction and interference with run-and-tumble particles." Physica A: Statistical Mechanics and its Applications, April 2022, 127323. http://dx.doi.org/10.1016/j.physa.2022.127323.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Maes, Christian, Kasper Meerts, and Ward Struyve. "Diffraction and Interference with Run-and-Tumble Particles." SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4036403.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Saha, Soumya Kanti, Aikya Banerjee, and Pradeep Kumar Mohanty. "Site-percolation transition of run-and-tumble particles." Soft Matter, 2024. http://dx.doi.org/10.1039/d4sm00838c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Kumari, Aradhana, and Sourabh Lahiri. "Microscopic thermal machines using run-and-tumble particles." Pramana 95, no. 4 (2021). http://dx.doi.org/10.1007/s12043-021-02225-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Angelani, L., R. Di Leonardo, and M. Paoluzzi. "First-passage time of run-and-tumble particles." European Physical Journal E 37, no. 7 (2014). http://dx.doi.org/10.1140/epje/i2014-14059-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Le Doussal, Pierre, Satya N. Majumdar, and Grégory Schehr. "Noncrossing run-and-tumble particles on a line." Physical Review E 100, no. 1 (2019). http://dx.doi.org/10.1103/physreve.100.012113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Vilela, Rafael Dias, Alfredo Jara Grados, and Jean-Régis Angilella. "Dynamics and sorting of run-and-tumble particles in fluid flows with transport barriers." Journal of Physics: Complexity, June 25, 2024. http://dx.doi.org/10.1088/2632-072x/ad5bb2.

Der volle Inhalt der Quelle
Annotation:
Abstract We investigate the dynamics of individual run-and-tumble particles in a convective flow which is a prototype of fluid flows with transport barriers. We consider the most prevalent case of swimmers denser than the background fluid. As a result of gravity and the effects of the carrying flow, in the absence of swimming the particles either sediment or remain in a convective cell. When run-and-tumble also takes place, the particles may move to upper convective cells. We derive analytically the probability of uprise. Since that probability in a given fluid flow can vary strongly accross s
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

van Ginkel, Bart, Bart van Gisbergen, and Frank Redig. "Run-and-Tumble Motion: The Role of Reversibility." Journal of Statistical Physics 183, no. 3 (2021). http://dx.doi.org/10.1007/s10955-021-02787-1.

Der volle Inhalt der Quelle
Annotation:
AbstractWe study a model of active particles that perform a simple random walk and on top of that have a preferred direction determined by an internal state which is modelled by a stationary Markov process. First we calculate the limiting diffusion coefficient. Then we show that the ‘active part’ of the diffusion coefficient is in some sense maximal for reversible state processes. Further, we obtain a large deviations principle for the active particle in terms of the large deviations rate function of the empirical process corresponding to the state process. Again we show that the rate function
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!