Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „RUNGE-KUTTA FOURTH ORDER METHOD“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "RUNGE-KUTTA FOURTH ORDER METHOD" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "RUNGE-KUTTA FOURTH ORDER METHOD"
Suryani, Irma, Wartono Wartono und Yuslenita Muda. „Modification of Fourth order Runge-Kutta Method for Kutta Form With Geometric Means“. Kubik: Jurnal Publikasi Ilmiah Matematika 4, Nr. 2 (25.02.2020): 221–30. http://dx.doi.org/10.15575/kubik.v4i2.6425.
Der volle Inhalt der QuelleTrifina, Leonora L. R., Ali Warsito, Laura A. S. Lapono und Andreas Ch Louk. „VISUALISASI FENOMENA HARMONIS DAN CHAOS PADA GETARAN TERGANDENG BERBASIS KOMPUTASI NUMERIK RUNGE KUTTA“. Jurnal Fisika : Fisika Sains dan Aplikasinya 8, Nr. 1 (27.04.2023): 11–20. http://dx.doi.org/10.35508/fisa.v8i1.11817.
Der volle Inhalt der QuelleHusin, Nurain Zulaikha, Muhammad Zaini Ahmad und Mohd Kamalrulzaman Md Akhir. „Incorporating Fuzziness in the Traditional Runge–Kutta Cash–Karp Method and Its Applications to Solve Autonomous and Non-Autonomous Fuzzy Differential Equations“. Mathematics 10, Nr. 24 (08.12.2022): 4659. http://dx.doi.org/10.3390/math10244659.
Der volle Inhalt der QuelleRijoly, Monalisa E., und Francis Yunito Rumlawang. „Penyelesaian Numerik Persamaan Diferensial Orde Dua Dengan Metode Runge-Kutta Orde Empat Pada Rangkaian Listrik Seri LC“. Tensor: Pure and Applied Mathematics Journal 1, Nr. 1 (28.05.2020): 7–14. http://dx.doi.org/10.30598/tensorvol1iss1pp7-14.
Der volle Inhalt der QuelleHussain, Kasim, Fudziah Ismail und Norazak Senu. „Runge-Kutta Type Methods for Directly Solving Special Fourth-Order Ordinary Differential Equations“. Mathematical Problems in Engineering 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/893763.
Der volle Inhalt der QuelleHussain, Kasim A., und Waleed J. Hasan. „Improved Runge-Kutta Method for Oscillatory Problem Solution Using Trigonometric Fitting Approach“. Ibn AL-Haitham Journal For Pure and Applied Sciences 36, Nr. 1 (20.01.2023): 345–54. http://dx.doi.org/10.30526/36.1.2963.
Der volle Inhalt der QuelleZhou, Naying, Hongxing Zhang, Wenfang Liu und Xin Wu. „A Note on the Construction of Explicit Symplectic Integrators for Schwarzschild Spacetimes“. Astrophysical Journal 927, Nr. 2 (01.03.2022): 160. http://dx.doi.org/10.3847/1538-4357/ac497f.
Der volle Inhalt der QuelleChauhan, Vijeyata, und Pankaj Kumar Srivastava. „Computational Techniques Based on Runge-Kutta Method of Various Order and Type for Solving Differential Equations“. International Journal of Mathematical, Engineering and Management Sciences 4, Nr. 2 (01.04.2019): 375–86. http://dx.doi.org/10.33889/ijmems.2019.4.2-030.
Der volle Inhalt der QuelleChristopher, Dr Esekhaigbe Aigbedion. „Consistency and Convergence Analysis of an 𝐹(𝑥,𝑦) Functionally Derived Explicit Fifth-Stage Fourth-Order Runge-Kutta Method“. International Journal of Basic Sciences and Applied Computing 10, Nr. 4 (30.12.2022): 10–13. http://dx.doi.org/10.35940/ijbsac.a1145.1210423.
Der volle Inhalt der QuelleAhmad, S. Z., F. Ismail, N. Senu und M. Suleiman. „Semi Implicit Hybrid Methods with Higher Order Dispersion for Solving Oscillatory Problems“. Abstract and Applied Analysis 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/136961.
Der volle Inhalt der QuelleDissertationen zum Thema "RUNGE-KUTTA FOURTH ORDER METHOD"
Boat, Matthew. „The time-domain numerical solution of Maxwell's electromagnetic equations, via the fourth order Runge-Kutta discontinuous Galerkin method“. Thesis, Swansea University, 2008. https://cronfa.swan.ac.uk/Record/cronfa42532.
Der volle Inhalt der QuelleAuffredic, Jérémy. „A second order Runge–Kutta method for the Gatheral model“. Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-49170.
Der volle Inhalt der QuelleBooth, Andrew S. „Collocation methods for a class of second order initial value problems with oscillatory solutions“. Thesis, Durham University, 1993. http://etheses.dur.ac.uk/5664/.
Der volle Inhalt der QuelleMalroy, Eric Thomas. „Solution of the ideal adiabatic stirling model with coupled first order differential equations by the Pasic method“. Ohio : Ohio University, 1998. http://www.ohiolink.edu/etd/view.cgi?ohiou1176410606.
Der volle Inhalt der QuelleAlhojilan, Yazid Yousef M. „Higher-order numerical scheme for solving stochastic differential equations“. Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/15973.
Der volle Inhalt der QuelleJewell, Jeffrey Steven. „Higher-order Runge--Kutta type schemes based on the Method of Characteristics for hyperbolic equations with crossing characteristics“. ScholarWorks @ UVM, 2019. https://scholarworks.uvm.edu/graddis/1028.
Der volle Inhalt der QuelleKUMAR, PRADEEP. „COVID-19 USING NUMERICAL METHOD“. Thesis, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/20443.
Der volle Inhalt der QuelleMeng-HanLi und 李孟翰. „A High-Order Runge-Kutta Discontinuous Galerkin Method for The Two-Dimensional Wave Equation“. Thesis, 2010. http://ndltd.ncl.edu.tw/handle/60562488311569777411.
Der volle Inhalt der Quelle國立成功大學
數學系應用數學碩博士班
98
In this work, we develop a high-order Runge-Kutta Discontinuous Galerkin (RKDG) method to solve the two-dimensional wave equations. We use DG methods to discretize the equations with high order elements in space, and then we use the mth-order, m-stage strong stability preserving Runge-Kutta (SSP-RK) scheme to solve the resulting semi-discrete equations. To discretize the equaiotns in spaces, we use the quadrilateral elements and the Q^k-polynomials as basis functions. The scheme achieves full high-order convergence in time and space while keeping the time-step proportional to the spatial mesh-size. Numerical results are presented that confirm the expected convergence properties. When all the local spaces contain the polynomials of degree p,the numerical experiments show that the numerical solution converges with order p+1.
Kotovshchikova, Marina. „On a third-order FVTD scheme for three-dimensional Maxwell's Equations“. 2016. http://hdl.handle.net/1993/31035.
Der volle Inhalt der QuelleFebruary 2016
Bücher zum Thema "RUNGE-KUTTA FOURTH ORDER METHOD"
National Institute of Standards and Technology (U.S.), Hrsg. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Den vollen Inhalt der Quelle findenNational Institute of Standards and Technology (U.S.), Hrsg. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Den vollen Inhalt der Quelle findenNational Institute of Standards and Technology (U.S.), Hrsg. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Den vollen Inhalt der Quelle findenNational Institute of Standards and Technology (U.S.), Hrsg. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Den vollen Inhalt der Quelle findenNational Institute of Standards and Technology (U.S.), Hrsg. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Den vollen Inhalt der Quelle findenNational Institute of Standards and Technology (U.S.), Hrsg. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Den vollen Inhalt der Quelle findenNational Institute of Standards and Technology (U.S.), Hrsg. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Den vollen Inhalt der Quelle findenCarpenter, Mark H. Fourth-order 2N-storage Runge-Kutta schemes. Hampton, Va: Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenA, Kennedy Christopher, und Langley Research Center, Hrsg. Fourth-order 2N Runge-Kutta schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenA, Kennedy Christopher, und Langley Research Center, Hrsg. Fourth-order 2N Runge-Kutta schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "RUNGE-KUTTA FOURTH ORDER METHOD"
Liu, Chunfeng, Haiming Wu, Li Feng und Aimin Yang. „Parallel Fourth-Order Runge-Kutta Method to Solve Differential Equations“. In Information Computing and Applications, 192–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25255-6_25.
Der volle Inhalt der QuelleZhang, Baoji, und Lupeng Fu. „Study on the Analysis Method of Ship Surf-Riding/Broaching Based on Maneuvering Equations“. In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 569–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_58.
Der volle Inhalt der QuelleAbadi, Maryam Asghari Hemmat, und Bing Yuan Cao. „Solving First Order Fuzzy Initial Value Problem by Fourth Order Runge-Kutta Method Based on Different Means“. In Advances in Intelligent Systems and Computing, 356–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66514-6_36.
Der volle Inhalt der QuelleBen Amma, B., Said Melliani und L. S. Chadli. „A Fourth Order Runge-Kutta Gill Method for the Numerical Solution of Intuitionistic Fuzzy Differential Equations“. In Recent Advances in Intuitionistic Fuzzy Logic Systems, 55–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02155-9_5.
Der volle Inhalt der QuelleGriffiths, David F., und Desmond J. Higham. „Runge–Kutta Method—I: Order Conditions“. In Numerical Methods for Ordinary Differential Equations, 123–34. London: Springer London, 2010. http://dx.doi.org/10.1007/978-0-85729-148-6_9.
Der volle Inhalt der QuelleRabiei, Faranak, Fudziah Ismail, Norihan Arifin und Saeid Emadi. „Third Order Accelerated Runge-Kutta Nyström Method for Solving Second-Order Ordinary Differential Equations“. In Informatics Engineering and Information Science, 204–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25462-8_17.
Der volle Inhalt der QuelleEremin, Alexey S., Nikolai A. Kovrizhnykh und Igor V. Olemskoy. „Economical Sixth Order Runge–Kutta Method for Systems of Ordinary Differential Equations“. In Computational Science and Its Applications – ICCSA 2019, 89–102. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24289-3_8.
Der volle Inhalt der QuelleSundnes, Joakim. „Stable Solvers for Stiff ODE Systems“. In Solving Ordinary Differential Equations in Python, 35–60. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46768-4_3.
Der volle Inhalt der QuelleBen Amma, Bouchra, Said Melliani und S. Chadli. „The Numerical Solution of Intuitionistic Fuzzy Differential Equations by the Third Order Runge-Kutta Nyström Method“. In Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications, 119–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35445-9_11.
Der volle Inhalt der QuelleSawhney, Himanshu, Kedar S. Pakhare, Rameshchandra P. Shimpi, P. J. Guruprasad und Yogesh M. Desai. „Single Variable New First-Order Shear Deformation Plate Theory: Numerical Solutions of Lévy-Type Plates Using Fourth-Order Runge-Kutta Technique“. In Recent Advances in Computational Mechanics and Simulations, 477–85. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8315-5_40.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "RUNGE-KUTTA FOURTH ORDER METHOD"
You, Xiong, Xinmeng Yao und Xin Shu. „An Optimized Fourth Order Runge-Kutta Method“. In 2010 Third International Conference on Information and Computing Science (ICIC). IEEE, 2010. http://dx.doi.org/10.1109/icic.2010.195.
Der volle Inhalt der QuelleNurhakim, Abdurrahman, Nanang Ismail, Hendri Maja Saputra und Saepul Uyun. „Modified Fourth-Order Runge-Kutta Method Based on Trapezoid Approach“. In 2018 4th International Conference on Wireless and Telematics (ICWT). IEEE, 2018. http://dx.doi.org/10.1109/icwt.2018.8527811.
Der volle Inhalt der QuelleHussain, Kasim, Fudziah Ismail, Norazak Senu und Faranak Rabiei. „Optimized fourth-order Runge-Kutta method for solving oscillatory problems“. In INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: Proceedings of the 2nd International Conference on Mathematical Sciences and Statistics (ICMSS2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4952512.
Der volle Inhalt der QuelleKalogiratou, Z., Th Monovasilis und T. E. Simos. „A fourth order modified trigonometrically fitted symplectic Runge-Kutta-Nyström method“. In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825719.
Der volle Inhalt der QuelleAbel Mejía Marcacuzco, Jesús, und Edwin Pino Vargas. „Computation of Gradually Varied Flow by Fourth Order Runge-Kutta Method (SRK)“. In 38th IAHR World Congress. The International Association for Hydro-Environment Engineering and Research (IAHR), 2019. http://dx.doi.org/10.3850/38wc092019-0999.
Der volle Inhalt der QuelleWing, Moo Kwong, Norazak Senu, Fudziah Ismail und Mohamed Suleiman. „A fourth order phase-fitted Runge-Kutta-Nyström method for oscillatory problems“. In PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation. AIP, 2013. http://dx.doi.org/10.1063/1.4801141.
Der volle Inhalt der QuelleRabiei, Faranak, und Fudziah Ismail. „Fourth order 4-stages improved Runge-Kutta method with minimized error norm“. In STATISTICS AND OPERATIONAL RESEARCH INTERNATIONAL CONFERENCE (SORIC 2013). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4894341.
Der volle Inhalt der QuelleTan, Jiabo. „3-Order Symplectic Runge-Kutta Method Based on Radau-Right Quadrature Formula“. In 2012 Fourth International Conference on Computational and Information Sciences (ICCIS). IEEE, 2012. http://dx.doi.org/10.1109/iccis.2012.10.
Der volle Inhalt der QuellePu Gaojun, Liu Zhongbo, Fang Kezhao und Kang Haigui. „Modified Boussinesq-Type Water Wave Model Based on Fourth-Order Runge-Kutta Method“. In 2013 Fourth International Conference on Digital Manufacturing & Automation (ICDMA). IEEE, 2013. http://dx.doi.org/10.1109/icdma.2013.189.
Der volle Inhalt der QuelleRabiei, Faranak, Fudziah Ismail und Saeid Emadi. „Solving Fuzzy Differential Equation Using Fourth Order 4-stages Improved Runge-Kutta Method“. In Annual International Conference on Computational Mathematics, Computational Geometry & Statistics (CMCGS 2014). GSTF, 2014. http://dx.doi.org/10.5176/2251-1911_cmcgs14.18.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "RUNGE-KUTTA FOURTH ORDER METHOD"
Tang, Hai C. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6031.
Der volle Inhalt der QuelleTrahan, Corey, Jing-Ru Cheng und Amanda Hines. ERDC-PT : a multidimensional particle tracking model. Engineer Research and Development Center (U.S.), Januar 2023. http://dx.doi.org/10.21079/11681/48057.
Der volle Inhalt der Quelle