Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sea clutter extraction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sea clutter extraction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sea clutter extraction"
Zhang, Le, Anke Xue, Xiaodong Zhao, Shuwen Xu und Kecheng Mao. „Sea-Land Clutter Classification Based on Graph Spectrum Features“. Remote Sensing 13, Nr. 22 (15.11.2021): 4588. http://dx.doi.org/10.3390/rs13224588.
Der volle Inhalt der QuelleZhang, Ling, Wei You, Q. Wu, Shengbo Qi und Yonggang Ji. „Deep Learning-Based Automatic Clutter/Interference Detection for HFSWR“. Remote Sensing 10, Nr. 10 (21.09.2018): 1517. http://dx.doi.org/10.3390/rs10101517.
Der volle Inhalt der QuelleZhao, Di, Hongyan Xing, Haifeng Wang, Huaizhou Zhang, Xinyi Liang und Haoqi Li. „Sea-Surface Small Target Detection Based on Four Features Extracted by FAST Algorithm“. Journal of Marine Science and Engineering 11, Nr. 2 (03.02.2023): 339. http://dx.doi.org/10.3390/jmse11020339.
Der volle Inhalt der QuelleDuan, Guoxing, Yunhua Wang, Yanmin Zhang, Shuya Wu und Letian Lv. „A Network Model for Detecting Marine Floating Weak Targets Based on Multimodal Data Fusion of Radar Echoes“. Sensors 22, Nr. 23 (25.11.2022): 9163. http://dx.doi.org/10.3390/s22239163.
Der volle Inhalt der QuelleJiang, Yingqi, Lili Dong und Junke Liang. „Image Enhancement of Maritime Infrared Targets Based on Scene Discrimination“. Sensors 22, Nr. 15 (05.08.2022): 5873. http://dx.doi.org/10.3390/s22155873.
Der volle Inhalt der QuellePan, Xueli, Nana Li, Lixia Yang, Zhixiang Huang, Jie Chen, Zhenhua Wu und Guoqing Zheng. „Anomaly-Based Ship Detection Using SP Feature-Space Learning with False-Alarm Control in Sea-Surface SAR Images“. Remote Sensing 15, Nr. 13 (24.06.2023): 3258. http://dx.doi.org/10.3390/rs15133258.
Der volle Inhalt der QuelleFarshchian, Masoud. „Target Extraction and Imaging of Maritime Targets in the Sea Clutter Spectrum Using Sparse Separation“. IEEE Geoscience and Remote Sensing Letters 14, Nr. 2 (Februar 2017): 232–36. http://dx.doi.org/10.1109/lgrs.2016.2636253.
Der volle Inhalt der QuelleNingbo, Liu, Xu Yanan, Ding Hao, Xue Yonghua und Guan Jian. „High-dimensional feature extraction of sea clutter and target signal for intelligent maritime monitoring network“. Computer Communications 147 (November 2019): 76–84. http://dx.doi.org/10.1016/j.comcom.2019.08.016.
Der volle Inhalt der QuelleWu, Zheng Long, Jie Li und Zhen Yu Guan. „Feature Extraction of Underwater Target Ultrasonic Echo Based on Wavelet Transform“. Applied Mechanics and Materials 599-601 (August 2014): 1517–22. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.1517.
Der volle Inhalt der QuelleChen, Xiaolong, Jian Guan, Zhonghua Bao und You He. „Detection and Extraction of Target With Micromotion in Spiky Sea Clutter Via Short-Time Fractional Fourier Transform“. IEEE Transactions on Geoscience and Remote Sensing 52, Nr. 2 (Februar 2014): 1002–18. http://dx.doi.org/10.1109/tgrs.2013.2246574.
Der volle Inhalt der QuelleDissertationen zum Thema "Sea clutter extraction"
Michelet, Jordan. „Extraction du fouillis de mer dans des images radar marin cohérent : modèles de champ de phases, méthodes de Boltzmann sur réseau, apprentissage“. Electronic Thesis or Diss., La Rochelle, 2022. http://www.theses.fr/2022LAROS048.
Der volle Inhalt der QuelleWe focus on the problem of sea clutter extraction in marine radar images. The aim is to develop image processing methods allowing us to avoid assumptions about the nature of the sea clutter and the signal of interest. On the one hand, we propose an original algorithm based on a variational approach : a multiphase model with diffuse interface. The results obtained show that the algorithm is efficient when the signal of interest has a sufficiently large signal-to-clutter ratio. On the other hand, we focus on the implementation of lattice Boltzmann schemes for convection-diffusion problems with non-constant advection velocity and non-zero source term. We describe the computation of the consistency obtained by asymptotic analysis at the acoustic scale and with a multiple relaxation time collision operator, and study the stability of these schemes in a particular case. The obtained results show that the proposed schemes allow removing the residual noise and to enhance the signal of interest on the image obtained with the first method. Finally, we propose a learning method allowing us to avoid assumptions on the nature of the signal of interest. Indeed, in addition to the variational approach, we propose an algorithm based on pulse-Doppler processing when the signal of interest is exo-clutter and has a low signal-to-clutter ratio. The results obtained from the proposed double auto-encoder, being comparable to the results provided by each of the two methods, allow validating this approach
Konferenzberichte zum Thema "Sea clutter extraction"
Yuan, Xujin, Yong Chen, Chao Wang, Hongcheng Yin, Jingping Yao, Zhiming Xu und Yongge Lu. „A new correlation parameter extraction method for searching mode sea clutter restraint“. In International Symposium on Optoelectronic Technology and Application 2014, herausgegeben von Gaurav Sharma, Fugen Zhou und Jennifer Liu. SPIE, 2014. http://dx.doi.org/10.1117/12.2069459.
Der volle Inhalt der QuelleLi, Yang, Xinyang Wang, Ning Zhang, Wenxing Wang, Qiming Zhang, Wenbo Ding und Longshan Wu. „A Machine Learning Based First-Order Sea Clutter Region Extraction Method for HFSWR“. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019. http://dx.doi.org/10.1109/apusncursinrsm.2019.8888570.
Der volle Inhalt der QuelleWu, Taifeng, Zhongtao Luo, Zishu He, Wang Zhaoyi und Xuyuan Chen. „Sea-clutter region extraction based on image segmentation methods for over-the-horizon radar“. In 2018 IEEE Radar Conference (RadarConf18). IEEE, 2018. http://dx.doi.org/10.1109/radar.2018.8378590.
Der volle Inhalt der QuelleWang, Yiwei, Bo Yin, Jinpeng Zhang und Yushi Zhang. „Effective Sea Clutter Region Extraction Based on Improved YOLOv4 Algorithm for Shore-Based UHF-Band Radar“. In 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC ). IEEE, 2022. http://dx.doi.org/10.1109/iaeac54830.2022.9929877.
Der volle Inhalt der QuelleThayaparan, Thayananthan, Milos Darkovic und Ljubisa Stankovic. „CFAR detection and extraction of maneuvering air target in strong sea-clutter via time-frequency-based S-method“. In SPIE Defense, Security, and Sensing, herausgegeben von Kenneth I. Ranney und Armin W. Doerry. SPIE, 2009. http://dx.doi.org/10.1117/12.819361.
Der volle Inhalt der QuelleStory, W. Rob, Thomas C. Fu und Erin E. Hackett. „Radar Measurement of Ocean Waves“. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49895.
Der volle Inhalt der Quelle