Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „SEISMIC FORCE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "SEISMIC FORCE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "SEISMIC FORCE"
Hawkins, Neil M., und S. K. Ghosh. „Seismic-Force-Resisting Systems“. PCI Journal 45, Nr. 5 (01.09.2000): 34–45. http://dx.doi.org/10.15554/pcij.09012000.34.45.
Der volle Inhalt der QuelleYan, Xian Li, Qing Ning Li, Chang Gao und Li Ying Wang. „Research on Dynamic Performance of Concrete-Filled Steel Tubular Trussed Arch Bridge under Earthquake“. Advanced Materials Research 368-373 (Oktober 2011): 1222–26. http://dx.doi.org/10.4028/www.scientific.net/amr.368-373.1222.
Der volle Inhalt der QuelleBai, Bing, Ze Yu Wu und Xiao Shan Deng. „Longitudinal Seismic Forces of Long-Span Bridge“. Advanced Materials Research 255-260 (Mai 2011): 1134–37. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.1134.
Der volle Inhalt der QuelleAkhtar, Mohsin Aakib Shamim. „Dynamic Seismic Analysis of Multi Storey Buildings in Seismic Zone V“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 2 (28.02.2022): 108–15. http://dx.doi.org/10.22214/ijraset.2022.40154.
Der volle Inhalt der QuelleXu, Qiang, und Xing Jun Qi. „Analysis on Seismic Pounding of Curved Bridge“. Applied Mechanics and Materials 90-93 (September 2011): 800–804. http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.800.
Der volle Inhalt der QuelleChen, Hong Kai, Hong Mei Tang, Ting Hu, Yi Hu und Xiao Ying He. „Study on Numerical Simulation for Failure Process of Girder Bridge under Seismic Influence“. Advanced Materials Research 530 (Juni 2012): 122–29. http://dx.doi.org/10.4028/www.scientific.net/amr.530.122.
Der volle Inhalt der QuellePaultre, Patrick, Éric Lapointe, Sébastien Mousseau und Yannick Boivin. „On calculating equivalent static seismic forces in the 2005 National Building Code of Canada“. Canadian Journal of Civil Engineering 38, Nr. 4 (April 2011): 476–81. http://dx.doi.org/10.1139/l11-021.
Der volle Inhalt der QuelleLiang, Jia. „Response and Parameter Analysis of Reinforced Retaining Wall under Earthquake Loading“. Applied Mechanics and Materials 268-270 (Dezember 2012): 702–5. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.702.
Der volle Inhalt der QuelleHeidebrecht, A. C., und A. Rutenberg. „Evaluation of foundation tie requirements in seismic design“. Canadian Journal of Civil Engineering 20, Nr. 1 (01.02.1993): 73–81. http://dx.doi.org/10.1139/l93-008.
Der volle Inhalt der QuelleUstun, Ozgur, Omer Cihan Kivanc und Mert Safa Mokukcu. „A Linear Brushless Direct Current Motor Design Approach for Seismic Shake Tables“. Applied Sciences 10, Nr. 21 (29.10.2020): 7618. http://dx.doi.org/10.3390/app10217618.
Der volle Inhalt der QuelleDissertationen zum Thema "SEISMIC FORCE"
Leaf, Timothy D. „Investigation of the vertical distribution of seismic forces in the static force and equivalent lateral force procedures for seismic design of multistory buildings /“. Available to subscribers only, 2006. http://proquest.umi.com/pqdweb?did=1136093311&sid=1&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Der volle Inhalt der QuelleManafpour, Alireza. „Force and displacement-based seismic design of RC buildings“. Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398834.
Der volle Inhalt der QuelleZERBIN, Matteo. „Force-Based Seismic Design of Dual System RC Structures“. Doctoral thesis, Università degli studi di Ferrara, 2017. http://hdl.handle.net/11392/2488041.
Der volle Inhalt der QuelleLa progettazione sismica di strutture è tipicamente basato su un approccio progettuale basato sulle forze. Nel corso degli anni, questo approccio ha dimostrato di essere robusto e facile da applicare dai progettisti e, in combinazione con il principio di gerarchia delle resistenze, fornisce una buona protezione contro i meccanismi di collasso fragili. Tuttavia, è anche noto che l'approccio di progettazione in forze così come attuato nell’odierna generazione di normative soffre di alcune carenze. Uno di questi riguarda il fatto che il tagliante alla base è calcolato utilizzando un fattore di struttura predefinito, cioè costante per tipo di sistema strutturale. Di conseguenza, per lo stesso input di progettazione, strutture dello stesso tipo ma diversa geometria sono sottoposti ad una diversa domanda di duttilità e mostrano quindi una diversa prestazione durante un evento sismico. L'obiettivo di questo studio è quello di presentare un approccio per il calcolo fattori di struttura utilizzando modelli analitici semplici. Questi modelli analitici descrivono la deformata a snervamento e spostamento ultimo della struttura e richiedono solo dati di input disponibili all’inizio del processo di progettazione, quali dati geometrici e proprietà dei materiali. La deformata della struttura ottenuta dalle dimensioni delle sezioni e la capacità in termini di duttilità sezionale possono essere stimati all'inizio della progettazione. La duttilità è alla base della formulazione del fattore di struttura come proposto dai modelli analitici presentati. Tali modelli analitici permettono di collegare le duttilità sezionali alla duttilità strutturale e quindi calcolare una stima del fattore di struttura per struttura a pareti e a telaio. Infine, si sviluppa un approccio per strutture duali di tipo telaio-parete come combinazione di risultati ottenuti per i sistemi singoli. Il metodo proposto è applicato ad un insieme di strutture duali e validato con analisi dinamiche non lineari. Si dimostra che il metodo proposto produce una più accurata prestazione sismica rispetto all'approccio progettuale delle normative odierne. Il lavoro presentato contribuisce pertanto allo sviluppo di nuove linee guida per la progettazione sismica nella prossima generazione di normative.
Hague, Samuel Dalton. „Eccentrically braced steel frames as a seismic force resisting system“. Kansas State University, 2013. http://hdl.handle.net/2097/15610.
Der volle Inhalt der QuelleDepartment of Architectural Engineering
Kimberly Waggle Kramer
Braced frames are a common seismic lateral force resisting system used in steel structure. Eccentrically braced frames (EBFs) are a relatively new lateral force resisting system developed to resist seismic events in a predictable manner. Properly designed and detailed EBFs behave in a ductile manner through shear or flexural yielding of a link element. The link is created through brace eccentricity with either the column centerlines or the beam midpoint. The ductile yielding produces wide, balanced hysteresis loops, indicating excellent energy dissipation, which is required for high seismic events. This report explains the underlying research of the behavior of EBFs and details the seismic specification used in design. The design process of an EBF is described in detail with design calculations for a 2- and 5-story structure. The design process is from the AISC 341-10 Seismic Provisions for Structural Steel Buildings with the gravity and lateral loads calculated according to ASCE 7-10 Minimum Design Loads for Buildings and Other Structures. Seismic loads are calculated using the Equivalent Lateral Force Procedure. The final member sizes of the 2-story EBF are compared to the results of a study by Eric Grusenmeyer (2012). The results of the parametric study are discussed in detail.
Fuqua, Brandon W. „Buckling restrained braced frames as a seismic force resisting system“. Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1131.
Der volle Inhalt der QuelleLi, Xinrong. „Reinforced concrete columns under seismic lateral force and varying axial load“. Thesis, University of Canterbury. Civil Engineering, 1994. http://hdl.handle.net/10092/7593.
Der volle Inhalt der QuelleMurphy, Michael. „Performance based evaluation of prequalified steel seismic force resisting structures in Canada“. Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43701.
Der volle Inhalt der QuelleStallbaumer, Cassandra. „Design comparison of hybrid masonry types for seismic lateral force resistance for low-rise buildings“. Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/32534.
Der volle Inhalt der QuelleArchitectural Engineering and Construction Science
Kimberly W. Kramer
The term hybrid masonry describes three variations of a lateral force resisting system that utilizes masonry panels inside steel framing to resist lateral loads from wind or earthquakes. The system originates from the rich history of masonry in the construction industry and is currently used in low-rise, low-seismic, wind-governed locations within the United States. Considerable research is focused on hybrid systems to prove their validity in high-seismic applications. The three variations of hybrid masonry are known by number. Type I hybrid masonry utilizes the masonry panel as a non-load-bearing masonry shear wall. Shear loads from the diaphragm are transferred into the beam, through metal plates, and over an air gap to the top of the masonry panel. The masonry panel transfers the shear to the beam below the panel using compression at the toe of the wall and tension through the reinforcement that is welded to the beam supporting the masonry. Steel framing in this system is designed to resist all gravity loads and effects from the shear wall. Type II hybrid masonry utilizes the masonry as a load-bearing masonry shear wall. The masonry wall, which is constructed from the ground up, supports the floor live loads and dead load of the wall, as well as the lateral seismic load. Shear is transferred from the diaphragm to the steel beam and into the attached masonry panel via shear studs. The masonry panel transfers the seismic load using compression at the toe and opposite corner of the panel. Type III hybrid masonry also utilizes the masonry panel as a load-bearing masonry shear wall, but the load transfer mechanisms are more complicated since the panel is attached to the surrounding steel framing on all four sides of the panel. This study created standard building designs for hybrid systems and a standard moment frame system with masonry infill in order to evaluate the validity of Type I and II hybrid masonry. The hybrid systems were compared to the standard of a moment frame system based on constructability, design, and economics.
Bakr, Junied. „Displacement-based approach for seismic stability of retaining structures“. Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/displacementbased-approach-for-seismic-stability-of-retaining-structures(fed35f6a-9a0d-46ae-8607-1dc434dc7c28).html.
Der volle Inhalt der QuelleLowe, Joshua Brian. „Quantifying Seismic Risk for Portable Ground Support Equipment at Vandenberg Air Force Base“. DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/269.
Der volle Inhalt der QuelleBücher zum Thema "SEISMIC FORCE"
Oregon. State Interagency Seismic Safety Task Force. Report to Governor Neil Goldschmidt from the State Interagency Seismic Safety Task Force. Salem, Or: The Division, 1990.
Den vollen Inhalt der Quelle findenY, Cheng Franklin, Hrsg. Seismic design aids for nonlinear pushover analysis of reinforced concrete and steel bridges. Boca Raton, FL: CRC Press, 2012.
Den vollen Inhalt der Quelle findenSeismic and wind forces: Structural design examples. Country Club Hills, IL: International Code Council, 2012.
Den vollen Inhalt der Quelle findenAlan, Williams. Seismic and wind forces: Structural design examples. Country Club Hills, Ill: International Code Council, 2003.
Den vollen Inhalt der Quelle findenAlan, Williams. Seismic and wind forces: Structural design examples. 3. Aufl. Country Club Hills, Ill: International Code Council, 2007.
Den vollen Inhalt der Quelle findenEmerick, Shannon Anderson. Wood platform construction and its superior resistance to seismic forces. Pullman, Wash: International Marketing Program for Agricultural Commodities & Trade, College of Agriculture & Home Economics, Washington State University, 1992.
Den vollen Inhalt der Quelle findenMoseley, V. J. "Jon", Andreas Lampropoulos, Eftychia Apostolidi und Christos Giarlelis. Characteristic Seismic Failures of Buildings. Herausgegeben von Stephanos E. Dritsos. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/sed016.
Der volle Inhalt der QuelleV, Leyendecker Edgar, und Geological Survey (U.S.), Hrsg. USGS Spectral response maps and their relationship with seismic design forces in building codes. [Denver, CO]: U.S. Geological Survey, 1995.
Den vollen Inhalt der Quelle finden1953-, Baradar Majid, Hrsg. Seismic design of building structures: A professional's introduction to earthquake forces and design details. 8. Aufl. Belmont, CA: Professional Publications, 2001.
Den vollen Inhalt der Quelle findenM, McMullin Kurt, Hrsg. Seismic design of building structures: A professional's introduction to earthquake forces and design details. 9. Aufl. Belmont, CA: Professional Publications, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "SEISMIC FORCE"
Charney, Finley A. „Equivalent Lateral Force Analysis“. In Seismic Loads, 123–34. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch18.
Der volle Inhalt der QuelleDi Julio, Roger M. „Static Lateral-Force Procedures“. In The Seismic Design Handbook, 119–41. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-9753-7_4.
Der volle Inhalt der QuelleTowhata, Ikuo. „Application of Seismic Inertia Force“. In Springer Series in Geomechanics and Geoengineering, 235–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-35783-4_12.
Der volle Inhalt der QuelleTowhata, Ikuo. „Seismic Force Exerted on Structures“. In Springer Series in Geomechanics and Geoengineering, 251–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-35783-4_13.
Der volle Inhalt der QuelleDi Julio, Roger M. „Linear Static Seismic Lateral Force Procedures“. In The Seismic Design Handbook, 247–73. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1693-4_5.
Der volle Inhalt der QuellePapagiannopoulos, George A., George D. Hatzigeorgiou und Dimitri E. Beskos. „Hybrid Force-Displacement Design“. In Seismic Design Methods for Steel Building Structures, 153–93. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80687-3_5.
Der volle Inhalt der QuellePapagiannopoulos, George A., George D. Hatzigeorgiou und Dimitri E. Beskos. „Force-Based Design of EC8“. In Seismic Design Methods for Steel Building Structures, 59–112. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80687-3_3.
Der volle Inhalt der QuelleDriver, R. G., D. J. L. Kennedy und G. L. Kulak. „Establishing seismic force reduction factors for steel structures“. In Behaviour of Steel Structures in Seismic Areas, 487–94. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-67.
Der volle Inhalt der QuelleTso, W. K., und N. Naumoski. „Evaluation of NBCC 1990 seismic force reduction factors“. In Earthquake Engineering, herausgegeben von Shamim A. Sheikh und S. M. Uzumeri, 751–58. Toronto: University of Toronto Press, 1991. http://dx.doi.org/10.3138/9781487583217-095.
Der volle Inhalt der QuelleZhao, Fei, Shaoyu Zhao und Shuli Fan. „Effect of Autoclaved Aerated Concrete on Dynamic Response of Concrete Gravity Dam Under Earthquakes“. In Lecture Notes in Civil Engineering, 409–26. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2532-2_35.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "SEISMIC FORCE"
Phillips, T. F. „Quality Control of Seismic Vibrator Output Force“. In EAGE workshop on Developments in Land Seismic Acquisition for Exploration. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609-pdb.159.e02.
Der volle Inhalt der Quelle„Formulation of a Conceptual Seismic Code“. In SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/1006.
Der volle Inhalt der QuelleZhang, Xiaozhe, und Franklin Y. Cheng. „Control Force Estimation in Seismic Building Design“. In Structures Congress 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41130(369)137.
Der volle Inhalt der QuelleKai, Satoru, und Akihito Otani. „Study on Dynamic Alternating Load on Piping Seismic Response“. In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45287.
Der volle Inhalt der Quelle„Elongation in Ductile Seismic-Resistant Reinforced Concrete Frames“. In SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/982.
Der volle Inhalt der Quelle„Seismic Design of Frame Buildings: a European Perspective“. In SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/1005.
Der volle Inhalt der QuelleOtani, Akihito, und Satoru Kai. „Study on Dynamic Response by Alternating and Static Load“. In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63363.
Der volle Inhalt der Quelle„Studies on the Seismic Response of Waffle-Flat Plate Buildings“. In SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/987.
Der volle Inhalt der Quelle„Seismic Retrofit of Beam-to-Column Joints with Grouted Steel Tubes“. In SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/986.
Der volle Inhalt der Quelle„Development of Canadian Seismic-Resistant Design Code for Reinforced Concrete Buildings“. In SP-157: Recent Developments In Lateral Force Transfer In Buildings. American Concrete Institute, 1995. http://dx.doi.org/10.14359/1008.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "SEISMIC FORCE"
Michel, Kenan. Performance Based Seismic Design of Lateral Force Resisting System. University of California, San Diego, Oktober 2020. http://dx.doi.org/10.25368/2020.126.
Der volle Inhalt der QuelleWu, Yingjie, Selim Gunay und Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/ytgv8834.
Der volle Inhalt der QuelleGunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay und Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/svks9397.
Der volle Inhalt der QuelleSEISMIC RESILIENCE ASSESSMENT OF A SINGLE-LAYER RETICULATED DOME DURING CONSTRUCTION. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.353.
Der volle Inhalt der QuelleSEISMIC RESILIENCE ASSESSMENT OF A SINGLE-LAYER RETICULATED DOME DURING CONSTRUCTION. The Hong Kong Institute of Steel Construction, März 2023. http://dx.doi.org/10.18057/ijasc.2023.19.1.10.
Der volle Inhalt der QuelleSEISMIC BEHAVIOR OF BUCKLING RESTRAINED BRACE WITH FULL-LENGTH OUTER RESTRAINT: EXPERIMENT AND RESTORING FORCE MODEL. The Hong Kong Institute of Steel Construction, September 2023. http://dx.doi.org/10.18057/ijasc.2023.19.3.1.
Der volle Inhalt der QuelleSEISMIC PERFORMANCE OF SINGLE-LAYER SPHERICAL RETICULATED SHELLS CONSIDERING JOINT STIFFNESS AND BEARING CAPACITY. The Hong Kong Institute of Steel Construction, Juni 2022. http://dx.doi.org/10.18057/ijasc.2022.18.2.9.
Der volle Inhalt der QuelleENERGY DISSIPATION OF STEEL-CONCRETE COMPOSITE BEAMS SUBJECTED TO VERTICAL CYCLIC LOADING. The Hong Kong Institute of Steel Construction, September 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.3.
Der volle Inhalt der QuelleSTUDY ON SEISMIC BEHAVIOR OF TRAPEZOIDAL CORRUGATED STEEL PLATE SHEAR WALL STRUCTURE WITH PEC COLUMN. The Hong Kong Institute of Steel Construction, Juni 2023. http://dx.doi.org/10.18057/ijasc.2023.19.2.8.
Der volle Inhalt der QuelleSEISMIC DESIGN AND ANALYSIS OF STEEL PANEL DAMPERS FOR STEEL FRAME BUILDINGS (ICASS’2020). The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.k09.
Der volle Inhalt der Quelle