Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Seismic loading of substructure“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Seismic loading of substructure" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Seismic loading of substructure"
Sayginer, O., R. di Filippo, A. Lecoq, A. Marino und O. S. Bursi. „Seismic Vulnerability Analysis of a Coupled Tank-Piping System by Means of Hybrid Simulation and Acoustic Emission“. Experimental Techniques 44, Nr. 6 (01.09.2020): 807–19. http://dx.doi.org/10.1007/s40799-020-00396-3.
Der volle Inhalt der QuelleHavlíček, Peter, und Július Šoltész. „Applicability of Commercial Software for Bridge Design with Consideration of Seismic Loading Effects“. Solid State Phenomena 272 (Februar 2018): 313–18. http://dx.doi.org/10.4028/www.scientific.net/ssp.272.313.
Der volle Inhalt der QuelleCasolo, Siro, Siegfried Neumair, Maria A. Parisi und Vincenzo Petrini. „Analysis of Seismic Damage Patterns in Old Masonry Church Facades“. Earthquake Spectra 16, Nr. 4 (November 2000): 757–73. http://dx.doi.org/10.1193/1.1586138.
Der volle Inhalt der QuelleBelostotsky, Alexander M., Pavel A. Akimov und Dmitry D. Dmitriev. „ABOUT METHODS OF SEISMIC ANALYSIS OF UNDERGROUND STRUCTURES“. International Journal for Computational Civil and Structural Engineering 14, Nr. 3 (28.09.2018): 14–25. http://dx.doi.org/10.22337/2587-9618-2018-14-3-14-25.
Der volle Inhalt der QuelleJia, Hongxing, Shizhu Tian, Shuangjiang Li, Weiyi Wu und Xinjiang Cai. „Seismic application of multi-scale finite element model for hybrid simulation“. International Journal of Structural Integrity 9, Nr. 4 (13.08.2018): 548–59. http://dx.doi.org/10.1108/ijsi-04-2017-0027.
Der volle Inhalt der QuelleChang, Guang Ming, Guo Hua Xing und Bo Quan Liu. „Equivalent Ductility Damage Model for Seismic Response of RC Structures: Test and Verification“. Advanced Materials Research 163-167 (Dezember 2010): 1714–18. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.1714.
Der volle Inhalt der QuelleSkokandić, Dominik, Anđelko Vlašić, Marija Kušter Marić, Mladen Srbić und Ana Mandić Ivanković. „Seismic Assessment and Retrofitting of Existing Road Bridges: State of the Art Review“. Materials 15, Nr. 7 (30.03.2022): 2523. http://dx.doi.org/10.3390/ma15072523.
Der volle Inhalt der QuelleMadhuri, Seeram, SiteshSubhra Bera und Brajkishor Prasad. „Dynamic Analysis of Offshore Wind Turbine Supported by Jacket Substructure under Wind and Wave Loading“. Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, Nr. 1 (19.12.2022): 1749–55. http://dx.doi.org/10.38208/acp.v1.714.
Der volle Inhalt der QuelleYUAN, Yong, Hirokazu IEMURA, Akira IGARASHI, Tetsuhiko AOKI und Yoshihisa YAMAMOTO. „INVESTIGATION OF SEISMIC PERFORMANCE OF HIGH DAMPING RUBBER BEARINGS FOR ISOLATED BRIDGES USING REAL-TIME SUBSTRUCTURE HYBRID LOADING TEST METHOD“. Doboku Gakkai Ronbunshuu A 63, Nr. 1 (2007): 265–76. http://dx.doi.org/10.2208/jsceja.63.265.
Der volle Inhalt der QuelleHughes, Jake Edmond, Yeesock Kim, Jo Woon Chong und Changwon Kim. „Particle Swarm Optimization for Active Structural Control of Highway Bridges Subjected to Impact Loading“. Shock and Vibration 2018 (14.08.2018): 1–12. http://dx.doi.org/10.1155/2018/4932870.
Der volle Inhalt der QuelleDissertationen zum Thema "Seismic loading of substructure"
Phansalkar, Nachiket S. „Seismic Substructure Design Workbook“. University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1220554481.
Der volle Inhalt der QuelleVelasco, Cesar A. Morales. „Substructure Synthesis Analysis and Hybrid Control Design for Buildings under Seismic Excitation“. Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30367.
Der volle Inhalt der QuellePh. D.
Patty, Jill Kathleen. „Longitudinal seismic response of concrete substructure-to-steel superstructure integral bridge connections /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3061626.
Der volle Inhalt der QuelleDow, Ryan A. (Ryan Andrew) 1977. „Performance of glass panels under seismic loading“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/84274.
Der volle Inhalt der QuelleKim, Jubum. „Behavior of hybrid frames under seismic loading /“. Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/10121.
Der volle Inhalt der QuelleMohammed, Mohammed Gaber Elshamandy. „GFRP-reinforced concrete columns under simulated seismic loading“. Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10242.
Der volle Inhalt der QuelleL’acier et les matériaux à base de polymères renforcés de fibres (PRF) ont des caractéristiques physiques et mécaniques différentes. La résistance à la haute corrosion, le rapport résistance vs poids, la non-conductivité et la bonne résistance à la fatigue font des barres d’armature en PRF, un renforcement alternatif aux barres d’armature en acier, pour des structures dans des environnements agressifs. Cependant, les barres d’armature en PRF ont un bas module d’élasticité et une courbe contrainte-déformation sous forme linéaire. Ces caractéristiques soulèvent des problèmes d'applicabilité quant à l’utilisation de tels matériaux comme renforcement pour des structures situées en forte zone sismique. La principale exigence pour les éléments structuraux des structures soumises à des charges sismiques est la dissipation d'énergie sans perte de résistance connue sous le nom de ductilité. Dans les structures rigides de type cadre, on s'attend à ce que les colonnes soient les premiers éléments à dissiper l'énergie dans les structures soumises à ces charges. La présente étude traite de la faisabilité des colonnes en béton armé entièrement renforcées de barres d’armature en polymères renforcés de fibres de verre (PRFV), obtenant une résistance et un déplacement latéral raisonnable par rapport aux exigences spécifiées dans divers codes. Onze colonnes à grande échelle ont été fabriquées: deux colonnes renforcées de barres d'acier (comme spécimens de référence) et neuf colonnes renforcées entièrement de barres en PRFV. Les colonnes ont été testées jusqu’à la rupture sous une charge quasi-statique latérale cyclique inversée et soumises simultanément à une charge axiale de compression. Les colonnes ont une section carrée de 400 mm avec une portée de cisaillement de 1650 mm pour simuler une colonne de 3,7 m de hauteur dans un bâtiment typique avec le point d’inflexion situé à la mi-hauteur. Les paramètres testés sont : le taux d’armature longitudinal (0,63%, 0,95% et 2,14 %), l'espacement des étriers (80mm, 100mm, 150 mm), les différentes configurations (C1, C2, C3 et C4) et le niveau de charge axiale (20%, 30 % et 40%). Les résultats des essais montrent clairement que les colonnes en béton renforcées de PRFV et bien conçues peuvent atteindre des niveaux de déformation élevés sans réduction de résistance. Un niveau acceptable de dissipation d'énergie, par rapport aux colonnes en béton armé avec de l’armature en acier, est atteint par les colonnes en béton armé de PRFV. L'énergie dissipée des colonnes en béton armé de PRFV était respectivement de 75% et 70% des colonnes en acier à un rapport déplacement latéral de 2,5% et 4%. Un déplacement supérieur a été atteint par les colonnes en PRFV jusqu'à 10% sans perte significative de résistance. La capacité d’un déplacement supérieur et l’énergie dissipée acceptable permettent aux colonnes en PRFV de participer au moment résistant dans des régions sujettes à des activités sismiques. Les rapports des déplacements expérimentaux ultimes ont été comparés avec les rapports estimés en utilisant l’Équation de confinement du code CSA S806-12. À partir de la comparaison, il a été trouvé que l’Équation de confinement sous-estime les valeurs des rapports de déplacement, donc les rapports de déplacement expérimentaux étaient utilisés pour modifier la zone de renforcement transversal du code CSA S806-12. Le comportement hystérétique encourage à proposer une procédure de conception pour que les colonnes fassent partie des cadres rigides à ductilité modérée et résistant au moment. Cependant, l'élaboration de guides de conception dépend de la détermination des déformations élastiques et inélastiques et de l'évaluation du facteur de modification de la force sismique et de la longueur de la rotule plastique pour les colonnes en béton armé renforcées de PRFV. Les résultats expérimentaux des colonnes renforcées de PRFV étudiées ont été utilisés pour justifier la ligne directrice de conception, ce qui prouve l’efficacité des équations de conception proposées.
Gubbins, Julie. „Strut action in columns subjected to seismic loading“. Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33971.
Der volle Inhalt der QuelleThis research project studies the two shear transfer mechanisms (compression field and direct strut action) observed in the reinforced concrete members. The capacity and behaviour of each specimen was predicted using a sectional response program (Response 2000), a two-dimensional non-linear finite element program (FIELDS), and the strut and tie method. These predictions, and comparisons with the actual experimental results, are presented and discussed. Guidance is provided for determining suitable strut and tie models to model both the compressive field and direct strut action of such columns.
Wallace, J. L. „Behaviour of beam lap splices under seismic loading“. Thesis, University of Canterbury. Civil Engineering, 1996. http://hdl.handle.net/10092/9638.
Der volle Inhalt der QuelleKurc, Ozgur. „A Substructure Based Parallel Solution Framework for Solving Linear Structural Systems with Multiple Loading Conditions“. Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6923.
Der volle Inhalt der QuelleLi, Alex C. (Alex Chung-Hsing) 1974. „Effect of seismic loading on steel moment resisting frames“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50061.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 47-48).
In recent history, the use of Steel Moment Resisting Frames (SMRF) in many structural steel buildings has become popular among many engineers and designers. The use of these moment resisting frames allows for more open spaces between floors and columns than in buildings that use the more traditional braced frame construction. One of the critical aspects of the moment resisting frames is the connections between the beams and the columns. The Northridge earthquake near Los Angeles California in 1994 showed that the existing designs for SMRF connections were inadequate and unstable. As a result, new connection designs were needed for SMRF construction. This thesis will first discuss the causes for the failures of the SMRF connections that were discovered after the Northridge earthquake. Next, new performance and testing requirements for new connection designs will be examined. Lastly, one possible solution, the SidePlate connection system, will be analyzed.
by Alex C. Li.
M.Eng.
Bücher zum Thema "Seismic loading of substructure"
Sen, Tapan K. Fundamentals of Seismic Loading on Structures. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470742341.
Der volle Inhalt der QuelleSen, Tapan K. Fundamentals of seismic loading on structures. Chichester, West Sussex, U.K: Wiley, 2009.
Den vollen Inhalt der Quelle findenY, Cheng Franklin, und American Society of Civil Engineers. Structural Division., Hrsg. Stability under seismic loading: Proceedings of a session at Structures Congress '86. New York, NY: American Society of Civil Engineers, 1986.
Den vollen Inhalt der Quelle findenR, Bergmann, und Comité international pour l'étude et le développement de la construction tubulaire, Hrsg. Design guide for concrete filled hollow section columns under static and seismic loading. Köln: TÜV Rheinland, 1995.
Den vollen Inhalt der Quelle findenBlack, Cameron J. Viscous heating of fluid dampers under wind and seismic loading: Experimental studies, mathematical modeling and design formulae. Berkeley: Dept. of Civil and Environmental Engineering, University of California, 2005.
Den vollen Inhalt der Quelle findenBlack, Cameron J. Viscous heating of fluid dampers under wind and seismic loading: Experimental studies, mathematical modeling and design formulae. Berkeley: Dept. of Civil and Environmental Engineering, University of California, 2005.
Den vollen Inhalt der Quelle findenBlack, Cameron J. Viscous heating of fluid dampers under wind and seismic loading: Experimental studies, mathematical modeling and design formulae. Berkeley: Dept. of Civil and Environmental Engineering, University of California, 2005.
Den vollen Inhalt der Quelle findenTzenov, Ludmil. Seismic resistant design of irregular structures: Generalised method for determination of design seismic loading = Düzensiz yapıların deprem yüklerine göre hesabı : deprem yüklerinin belirlenmesi için genelleştirilmiş metod. Maslak, İstanbul: Turkish Earthquake Foundation, 2001.
Den vollen Inhalt der Quelle findenbéton, Comité euro-international du, Hrsg. RC frames under earthquake loading: State of the art report. London, UK: T. Telford, 1996.
Den vollen Inhalt der Quelle findenACI, International Conference on Innovations in Design With Emphasis on Seismic Wind and Environmental Loading Quality Control and Innovations in Materials/Hot Weather Concreting (2002 Cancun Mexico). Innovations in design with emphasis on seismic, wind, and environmental loading, quality control and innovations in materials/hot weather concreting. Farmington Hills, Mich: American Concrete Institute, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Seismic loading of substructure"
Hinzen, Klaus-G. „Seismic Loading“. In Structural Dynamics with Applications in Earthquake and Wind Engineering, 97–151. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-57550-5_2.
Der volle Inhalt der QuelleManohar, Sharad, und Suhasini Madhekar. „Substructure Design and Soil–Structure Coupling“. In Seismic Design of RC Buildings, 301–47. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2319-1_8.
Der volle Inhalt der QuelleHaldar, Achintya. „Structural Reliability Estimation for Seismic Loading“. In Encyclopedia of Earthquake Engineering, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36197-5_277-1.
Der volle Inhalt der QuelleJia, Junbo. „Slope Stability Due to Seismic Loading“. In Soil Dynamics and Foundation Modeling, 251–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40358-8_8.
Der volle Inhalt der QuelleHaldar, Achintya. „Structural Reliability Estimation for Seismic Loading“. In Encyclopedia of Earthquake Engineering, 3626–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35344-4_277.
Der volle Inhalt der QuelleZhang, Chunwei, Zeshan Alam, Li Sun und Bijan Samali. „Experimental strategy and seismic loading program“. In Seismic Performance of Asymmetric Building Structures, 29–55. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003026556-3.
Der volle Inhalt der QuelleLaora, Raffaele Di, und Emmanouil Rovithis. „Design of piles under seismic loading“. In Analysis of Pile Foundations Subject to Static and Dynamic Loading, 269–300. London: CRC Press, 2021. http://dx.doi.org/10.1201/9780429354281-8.
Der volle Inhalt der QuelleKarayannis, C. G., K. K. Sideris und C. M. Economou. „Response of repaired RC exterior joints under cyclic loading“. In European Seismic Design Practice, 285–92. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203756492-44.
Der volle Inhalt der QuelleSingh, Mulayam, Kasilingam Senthil und Shailja Bawa. „Response of Underground Tunnel Against Seismic Loading“. In Lecture Notes in Civil Engineering, 1027–39. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12011-4_87.
Der volle Inhalt der QuelleMateescu, G., und V. Gioncu. „Member response to strong pulse seismic loading“. In Behaviour of Steel Structures in Seismic Areas, 55–62. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Seismic loading of substructure"
Reza, Md Shahin, Oreste S. Bursi, Giuseppe Abbiati und Alessio Bonelli. „Pseudo-Dynamic Heterogeneous Testing With Dynamic Substructuring of a Piping System Under Earthquake Loading“. In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97441.
Der volle Inhalt der QuelleLöhning, Thomas, Uffe Graaskov Ravn, Flemming Pedersen und Louis Westh Moe Christoffersen. „The 1915 Çanakkale Bridge – Concept Development of Substructure“. In IABSE Symposium, Istanbul 2023: Long Span Bridges. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/istanbul.2023.0126.
Der volle Inhalt der QuelleAyoub, E. F., M. Youakim und P. Nady. „Simplified approach for the seismic analysis of precast girder bridges with gap“. In IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/ghent.2021.1375.
Der volle Inhalt der QuelleAyoub, E. F., M. Youakim und P. Nady. „Simplified approach for the seismic analysis of precast girder bridges with gap“. In IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/ghent.2021.1375.
Der volle Inhalt der QuelleLöhning, Thomas, Uffe Graaskov Ravn, Flemming Pedersen, Louis Westh und Moe Christoffersen. „The 1915 Çanakkale Bridge – Design and Construction of Substructure“. In IABSE Symposium, Istanbul 2023: Long Span Bridges. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/istanbul.2023.0575.
Der volle Inhalt der QuelleStark, Timothy D., Thomas J. Dehlin, Soheil Nazarian, Hoda Azari, Deren Yuan und Carlton L. Ho. „Seismic Surface Wave Testing for Track Substructure Assessment“. In 2014 Joint Rail Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/jrc2014-3776.
Der volle Inhalt der QuelleAbramchuk, George, und Kristina Abramchuk. „Dynamic Measurements and Damage Detection in Substructure with Swimming Loading Functions“. In AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-6337.
Der volle Inhalt der QuelleThomassen, Paul E., und Jo̸rgen Krokstad. „A Simplified Approach to Wave Loading for Fatigue Damage Analysis of Monopiles“. In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20651.
Der volle Inhalt der QuelleChen, Chao, Chun-Sheng Zhao und Qing-Jun Ding. „Dynamic Analysis of Composite Stator of Ultrasonic Motor Based on Substructure Interface Loading Theory“. In 2006 IEEE International Conference on Robotics and Biomimetics. IEEE, 2006. http://dx.doi.org/10.1109/robio.2006.340198.
Der volle Inhalt der QuelleKurc, O., und K. M. Will. „A Substructure Based Parallel Linear Solution Framework for Structural Systems Having Multiple Loading Cases“. In International Conference on Computing in Civil Engineering 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40794(179)73.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Seismic loading of substructure"
Asareh, M. A., und I. Prowell. Seismic Loading for FAST: May 2011 - August 2011. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1050131.
Der volle Inhalt der QuelleSampson, M. Seismic Loading for Short-Term Duration Exposures and Temporary Structures. Office of Scientific and Technical Information (OSTI), März 2022. http://dx.doi.org/10.2172/1860669.
Der volle Inhalt der QuelleLin, L., und J. Adams. Lessons for the fragility of Canadian hydropower components under seismic loading. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/223055.
Der volle Inhalt der QuelleGirrens, S. P., und C. R. Farrar. Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading. Office of Scientific and Technical Information (OSTI), Juli 1991. http://dx.doi.org/10.2172/5528280.
Der volle Inhalt der QuelleWu, Yingjie, Selim Gunay und Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/ytgv8834.
Der volle Inhalt der QuelleZaslawsky, M., und W. N. Kennedy. The comparison of DYNA3D to approximate solutions for a partially- full waste storage tank subjected to seismic loading. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6689637.
Der volle Inhalt der QuelleZaslawsky, M., und W. N. Kennedy. The comparison of DYNA3D to approximate solutions for a partially- full waste storage tank subjected to seismic loading. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10115206.
Der volle Inhalt der QuelleSchiller, Brandon, Tara Hutchinson und Kelly Cobeen. Comparison of the Response of Small- and Large-Component Cripple Wall Specimens Tested under Simulated Seismic Loading (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/iyca1674.
Der volle Inhalt der QuelleChauhan, Vinod. L52307 Remaining Strength of Corroded Pipe Under Secondary Biaxial Loading. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2009. http://dx.doi.org/10.55274/r0010175.
Der volle Inhalt der QuelleCobeen, Kelly, Vahid Mahdavifar, Tara Hutchinson, Brandon Schiller, David Welch, Grace Kang und Yousef Bozorgnia. Large-Component Seismic Testing for Existing and Retrofitted Single-Family Wood-Frame Dwellings (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/hxyx5257.
Der volle Inhalt der Quelle