Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „SHEAR CORE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "SHEAR CORE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "SHEAR CORE"
Kwan, A. K. H. „Shear Lag in Shear/Core Walls“. Journal of Structural Engineering 122, Nr. 9 (September 1996): 1097–104. http://dx.doi.org/10.1061/(asce)0733-9445(1996)122:9(1097).
Der volle Inhalt der QuelleDeschapelles, Bernardo. „Discussion: Shear Lag in Shear/Core Walls“. Journal of Structural Engineering 123, Nr. 11 (November 1997): 1552–54. http://dx.doi.org/10.1061/(asce)0733-9445(1997)123:11(1552).
Der volle Inhalt der QuelleJoo, Hyo-Eun, Sun-Jin Han, Min-Kook Park und Kang Su Kim. „Shear Tests of Deep Hollow Core Slabs Strengthened by Core-Filling“. Applied Sciences 10, Nr. 5 (02.03.2020): 1709. http://dx.doi.org/10.3390/app10051709.
Der volle Inhalt der QuelleCui, Shi Qi, Xu Wen Kong, Xin Wang und Ming Liang Yang. „Experimental Study about Testing Masonry Shear Strength with Drilled Core Method“. Applied Mechanics and Materials 166-169 (Mai 2012): 1241–44. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.1241.
Der volle Inhalt der QuelleHO, DUEN, und CHI HO LIU. „SHEAR-WALL AND SHEAR-CORE ASSEMBLIES WITH VARIABLE CROSS-SECTION.“ Proceedings of the Institution of Civil Engineers 81, Nr. 3 (September 1986): 433–46. http://dx.doi.org/10.1680/iicep.1986.549.
Der volle Inhalt der QuelleWalter, Michael J. „A shear pathway to the core“. Nature 403, Nr. 6772 (Februar 2000): 839–40. http://dx.doi.org/10.1038/35002698.
Der volle Inhalt der QuellePavlova, S. A. „Analysis of contact interaction of polymer honeycomb core and CFRP base layers in sandwich-core constructions“. VESTNIK of Samara University. Aerospace and Mechanical Engineering 20, Nr. 1 (20.04.2021): 87–96. http://dx.doi.org/10.18287/2541-7533-2021-20-1-87-96.
Der volle Inhalt der QuelleHO, D., und CHI HO LIU. „CORRIGENDUM: SHEAR-WALL AND SHEAR-CORE ASSEMBLIES WITH VARIABLE CROSS- SECTION“. Proceedings of the Institution of Civil Engineers 83, Nr. 1 (März 1987): 355. http://dx.doi.org/10.1680/iicep.1987.360.
Der volle Inhalt der QuelleWu, Xin Feng, Jian Ying Xu, Jing Xin Hao, Rui Liao und Zhu Zhong. „Three-Point Bending Shear Stress of Wooden Sandwich Composite “. Materials Science Forum 852 (April 2016): 1337–41. http://dx.doi.org/10.4028/www.scientific.net/msf.852.1337.
Der volle Inhalt der QuelleNassif Sabr, Yousif, Dr Husain Khalaf Jarallah und Dr Hassan Issa Abdul Kareem. „Improving the Shear Strength of Lightweight RC Thick Hollow Core Slab Made of Recycled Materials“. International Journal of Engineering & Technology 7, Nr. 4.20 (28.11.2018): 403. http://dx.doi.org/10.14419/ijet.v7i4.20.26143.
Der volle Inhalt der QuelleDissertationen zum Thema "SHEAR CORE"
GUPTA, ARUN KUMAR. „DETERMINATION OF SEISMIC PARAMETER OF RCC TALL BUILDING USING SHEAR CORE , SHEAR WALL AND SHEAR CORE WITH OUTRIGGER“. Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18840.
Der volle Inhalt der QuelleRoberts, Ryan (Ryan M. ). „Shear lag in truss core sandwich beams“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32935.
Der volle Inhalt der QuelleIncludes bibliographical references (leaf 30).
An experimental study was conducted to investigate the possible influence of shear lag in the discrepancy between the theoretical and measured stiffness of truss core sandwich beams. In previous studies, the measured values of stiffness in loading have proven to be 50% of the theoretical stiffness during three point bending tests. To test the effect of shear lag on this phenomenon, the beams' dimensions were altered to decrease the presence of shear lag in a gradual manner so a trend could be observed. The experimental trails were carried out on three types of beams each with different diameters of truss material. Results show that this study has improved the accuracy of the measured results from previous studies with the two smallest truss diameter beams. Because the discrepancy between the theoretical and measured values is the greatest for the largest beams, (when the shear deflection has the least influence), it is concluded that shear lag is not responsible for the discrepancy between measured and theoretical stiffness.
by Ryan Roberts.
S.B.
Noury, Philippe. „Shear crack initiation and propagation in foam core sandwich structures“. Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326642.
Der volle Inhalt der Quelle鄺君尚 und Jun-shang Kuang. „Elastic and elasto-plastic analysis of shear wall and core wall structures“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1988. http://hub.hku.hk/bib/B3123155X.
Der volle Inhalt der Quelle梁少江 und Siu-kong Leung. „Analysis of shear/core wall structures using a linear moment beam-typeelement“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31213352.
Der volle Inhalt der QuelleKuang, Jun-shang. „Elastic and elasto-plastic analysis of shear wall and core wall structures /“. [Hong Kong] : University of Hong Kong, 1988. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12428565.
Der volle Inhalt der QuelleYun, Samuel. „Mechanical Analysis of a Detachment Shear Zone, Picacho Mountains Metamorphic Core Complex (AZ)“. Thesis, University of Louisiana at Lafayette, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10814249.
Der volle Inhalt der QuelleOn I-10 between Tuscon, AZ, and Phoenix, AZ, is the Picacho Mountains Metamorphic Core Complex (MCC). The Picacho Mountains MCC represents the northwest of the Greater Catalina MCC which includes Tortolita, Santa Catalina, and Rincon Mountains. To the immediate south of I-10 is Picacho Peak, an early Miocene andesitic volcanic center, and opposite of Picacho Peak are the granitic Picacho Mountains. The detachment shear zone (DSZ) is well exposed at Hill 2437. The mylonitic DSZ is separated into an upper, middle, and lower plate by two detachment faults. The DSZ is estimated to have undergone deformation at ~500?C based on recrystallized quartz microstructures and a previous thermochronologic study by previous graduate student Maxwell Schaper. We obtained an average flow stress of 43 ? 9 MPa using a quartz paleopiezometer by Stipp and Tullis (2003). Using a flow law by Hirth et al. (2001), we found strain rate values between 10-13 and 10-12 s-1. Grain size analysis indicates that quartz recrystallized grains have relatively moderate aspect ratio (1.55 < Rf < 1.87) which correlates to small amount of finite strain (1.13 < Rs < 1.33). Results from vorticity analysis based on the recrystallized quartz grain shape foliation method reveals that quartz was deformed under ~60% pure shear and ~40% simple shear (0.48 < Wm < 0.70, assuming plane strain), and the DSZ experienced ~18% of shortening perpendicular to mylonitic foliation, and up to ~22% of stretching parallel to the flow plane up. We found that despite high strain rate values and evidence of high strain rate (e.g. undulose extinction in quartz, chessboard structures, cataclasites, and possible pseudotachylytes), this is not reflected in the amount of finite strain recorded by the mylonitic DSZ.
Leung, Siu-kong. „Analysis of shear/core wall structures using a linear moment beam-type element /“. Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18155376.
Der volle Inhalt der QuelleLindwall, Caroline, und Jonas Wester. „Modelling Lateral Stability of Prefabricated Concrete Structures“. Thesis, KTH, Betongbyggnad, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188586.
Der volle Inhalt der QuelleVid stabilitetsberäkningar av prefabricerade betongstommar med hjälp av FEM-verktyg ställs krav på kunskap om hur elementen förhåller sig till varandra. Detta arbete berör hur fogar mellan byggnadselement påverkar modellering av prefabricerade betongstommar med avgränsning till fogar mellan håldäckselement och mellan solida väggelement. Arbetet berör även en studie i hur ett bjälklags egenskaper kan justeras så att fogarnas effekt kan tillvaratas utan att modellera varje enskilt håldäckselement. Arbetet inleddes med att utböjningen analyserades hos 10 st ihopskarvade håldäckselement, lastade i dess plan likt en hög balk, i en FE-modell skapad i programmet Robot™, från Autodesk®. Fogarna mellan håldäcken modellerades som antingen rigida eller elastiska och håldäckens tvärsnittsgeometri och längd varierades under testet. Den linjära styvheten mellan håldäcken togs från litteraturen som 0.05 (GN/m)/m. Resultatet visade att ändrad tvärsnittsgeometri gav större skillnader för deformationen än varierad längd på håldäcken. Håldäckens skjuvmodul justerades sedan i dess plan för de rigida testen tills dess att de uppnådde samma utböjning som de elastiska. Resultatet visade att skjuvmodulen behövdes reduceras med en faktor 0.1, i medeltal för de olika tvärsnittsgeometrierna och håldäckslängderna. Utefter geometrin på en fog med förtagningar mellan prefabricerade väggar togs en beräkningsmodell fram för den linjärelastiska styvheten i väggfogarna. Resultatet blev en styvhet på 1.86 (GN/m)/m. För att verifiera den beräknade styvheten togs en FE-modell fram bestående av en 30m hög vägg lastad horisontellt i dess plan med en eller två vertikala fogar där en linjär styvhet applicerades. Utböjningen samt reaktionskrafterna noterades, resultatet för den uträknade linjära styvheten jämfördes med andra styvheter och bedömdes utifrån detta vara rimlig. Reaktionskrafterna visade sig vara beroende av styvheten på fogen. Den sänkta skjuvmodulen för håldäcken och den beräknade linjära elasticiteten för väggarna användes sedan i en FE-modell av en 10-våningsbyggnad med två stabiliserande enheter där de vertikala reaktionskrafterna analyserades. Resultatet visade att endast 0.02 procentenheter skiljer reaktionskrafterna i de stabiliserande enheterna då hänsyn tas till fogarna mellan håldäcken och 0.09 procentenheter då hänsyn tas till fogarna mellan väggarna. Resultatet skiljer sig från när endast väggen modellerades, vilket tros bero på att bjälklaget hjälper till att motverka deformationer i väggfogarna. Fogen mellan bjälklagselementen tros kunna ha större inverkan på en byggnad med stabiliserande enheter som drastiskt ändrar styvhet från ett plan till ett annat, i dessa fall kan den framtagna reduktionsfaktorn vara av nytta.
Fiszman, Nicolas. „Study of the average shear velocity of the inner-core of the earth using isolation filters“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/52999.
Der volle Inhalt der QuelleBücher zum Thema "SHEAR CORE"
Mankbadi, R. R. Effects of core turbulence on jet excitability. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Den vollen Inhalt der Quelle findenPajari, Matti. Shear resistance of prestressed hollow core slabs on flexible supports. Espoo, Finland: Technical Research Centre of Finland, 1995.
Den vollen Inhalt der Quelle findenMazzone, Graziano. The shear response of precast, pretensioned hollow-core concrete slabs. Ottawa: National Library of Canada, 1996.
Den vollen Inhalt der Quelle findenRiemer, Michael. Development and validation of the downhole freestanding shear device (DFSD) for measuring the dynamic properties of clay. Sacramento, CA: California Dept. of Transportation, Division of Research and Innovation, 2008.
Den vollen Inhalt der Quelle findenMabey, Matthew A. Downhole and seismic cone penetrometer shear-wave velocity measurements for the Portland Metropolitan Area, 1993 and 1994. Portland, Or: State of Oregon, Dept. of Geology and Mineral Industries, 1995.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. An analysis code for the Rapid Engineering Estimation of Momentum and Energy Losses (REMEL). [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenFellinger, Joris H. H. Shear & Anchorage Behavior Of Fire Exposed Hollow Core Slabs. Delft Univ Pr, 2004.
Den vollen Inhalt der Quelle findenHrabowych, Orest Jaroslav. Methods of analysis of shear walls and cores. 1987.
Den vollen Inhalt der Quelle findenNeutral-line magnetic shear and enhanced coronal heating in solar active regions. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenArneson, Richard J. Dworkin and Luck Egalitarianism. Herausgegeben von Serena Olsaretti. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199645121.013.4.
Der volle Inhalt der QuelleBuchteile zum Thema "SHEAR CORE"
Czabaj, Michael W., W. R. Tubbs, Alan T. Zehnder und Barry D. Davidson. „Compression/Shear Response of Honeycomb Core“. In Experimental and Applied Mechanics, Volume 6, 393–98. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0222-0_48.
Der volle Inhalt der QuelleMiyata, M., N. Kurita und I. Nakamura. „Turbulent Plane Jet Excited Mechanically by an Oscillating Thin Plate in the Potential Core“. In Turbulent Shear Flows 7, 209–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_16.
Der volle Inhalt der QuelleQuinlan, Taylor, Alan Lloyd und Sajjadul Haque. „Effect of Core Fill Timing on Shear Capacity in Hollow-Core Slabs“. In Lecture Notes in Civil Engineering, 359–69. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0656-5_30.
Der volle Inhalt der QuelleLiu, Xian-Feng, und Adam M. Dziewonski. „Global analysis of shear wave velocity anomalies in the lower-most mantle“. In The Core‐Mantle Boundary Region, 21–36. Washington, D. C.: American Geophysical Union, 1998. http://dx.doi.org/10.1029/gd028p0021.
Der volle Inhalt der QuelleRathi, Nishant, G. Muthukumar und Manoj Kumar. „Influence of Shear Core Curtailment on the Structural Response of Core-Wall Structures“. In Lecture Notes in Civil Engineering, 207–15. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0362-3_17.
Der volle Inhalt der QuelleManshadi, Behzad D., Anastasios P. Vassilopoulos, Julia de Castro und Thomas Keller. „Shear Wrinkling of GFRP Webs in Cell-Core Sandwiches“. In Advances in FRP Composites in Civil Engineering, 95–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17487-2_18.
Der volle Inhalt der QuelleChovet, Rogelio, und Fethi Aloui. „Void Fraction Influence Over Aqueous Foam Flow: Wall Shear Stress and Core Shear Evolution“. In Progress in Clean Energy, Volume 1, 909–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16709-1_66.
Der volle Inhalt der QuelleSurana, Mitesh, Yogendra Singh und Dominik H. Lang. „Seismic Performance of Shear-Wall and Shear-Wall Core Buildings Designed for Indian Codes“. In Advances in Structural Engineering, 1229–41. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2193-7_96.
Der volle Inhalt der QuelleYamada, M., und T. Yamakaji. „Steel panel shear wall – Analysis on the center core steel panel shear wall system“. In Behaviour of Steel Structures in Seismic Areas, 541–48. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-74.
Der volle Inhalt der QuelleGrimm, S., und J. Lange. „Testing the core of sandwich panels with square shear specimen“. In Modern Trends in Research on Steel, Aluminium and Composite Structures, 222–27. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-26.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "SHEAR CORE"
MANKBADI, REDA, EDWARD RICE und GANESH RAMAN. „Effects of core turbulence on jet excitability“. In 2nd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-966.
Der volle Inhalt der QuelleVotyakov, E. V., und Stavros C. Kassinos. „CORE OF THE MAGNETIC OBSTACLE“. In Sixth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/tsfp6.1130.
Der volle Inhalt der QuelleWong, Patrick C., Brian Taylor und Jean Audibert. „Differences In Shear Strength Between Jumbo Piston Core and Conventional Rotary Core Samples“. In Offshore Technology Conference. Offshore Technology Conference, 2008. http://dx.doi.org/10.4043/19683-ms.
Der volle Inhalt der QuelleAnacleto, Paulo M., Edgar Fernandes, Manuel V. Heitor und Sergei I. Shtork. „CHARACTERISTICS OF PRECESSING VORTEX CORE IN THE LPP COMBUSTOR MODEL“. In Second Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/tsfp2.220.
Der volle Inhalt der QuelleAvile´s, F., und L. A. Carlsson. „On the Sandwich Plate Twist Test for Shear Testing“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66320.
Der volle Inhalt der QuelleKim, Kiyoung, und Haecheon Choi. „Characteristics of turbulent core-annular flows in a vertical pipe“. In Ninth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/tsfp9.70.
Der volle Inhalt der QuelleDuwig, Christophe, und Laszlo Fuchs. „STUDY OF PRECESSING VORTEX CORE DURING VORTEX BREAKDOWN USING LES AND POD“. In Fifth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2007. http://dx.doi.org/10.1615/tsfp5.1400.
Der volle Inhalt der QuelleEcker, Tobias, K. Todd Lowe und Wing F. Ng. „An experimental study of the role of core intermittency in equivalent jet noise sources“. In Ninth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/tsfp9.980.
Der volle Inhalt der QuelleRusnak, David, und Dean Schleicher. „A test method to determine shear in sandwich-core composite beams“. In Advanced Marine Vehicles Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1458.
Der volle Inhalt der QuelleFan, Wei, Pizhong Qiao und Julio F. Davalos. „Design Optimization of Honeycomb Core Configurations for Effective Transverse Shear Stiffness“. In 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40988(323)48.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "SHEAR CORE"
McDermott, Matthew R. Shear Capacity of Hollow-Core Slabs with Concrete Filled Cores. Precast/Prestressed Concrete Institute, 2018. http://dx.doi.org/10.15554/pci.rr.comp-002.
Der volle Inhalt der QuelleHahm, T. S., und K. H. Burrell. Role of flow shear in enhanced core confinement regimes. Office of Scientific and Technical Information (OSTI), März 1996. http://dx.doi.org/10.2172/220600.
Der volle Inhalt der QuelleBell, M. G., R. E. Bell, P. C. Efthimion, D. R. Ernst, E. D. Fredrickson und et al. Core Transport Reduction in Tokamak Plasmas with Modified Magnetic Shear. Office of Scientific and Technical Information (OSTI), Juli 1998. http://dx.doi.org/10.2172/2552.
Der volle Inhalt der QuelleBurrell, K. H., C. M. Greenfield, L. L. Lao, G. M. Staebler, M. E. Austin, B. W. Rice und B. W. Stallard. Effects of ExB Velocity Shear and Magnetic Shear in the Formation of Core Transport Barriers in the DIII-D Tokamak. Office of Scientific and Technical Information (OSTI), Dezember 1997. http://dx.doi.org/10.2172/629302.
Der volle Inhalt der QuelleBroome, Scott, Mathew Ingraham und Perry Barrow. Permeability and Direct Shear Test Determinations of Barnwell Core in Support of UNESE. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1734478.
Der volle Inhalt der QuelleBroome, Scott, Moo Lee und Aviva Joy Sussman. Direct Shear and Triaxial Shear test Results on Core from Borehole U-15n and U-15n#10 NNSS in support of SPE. Office of Scientific and Technical Information (OSTI), Dezember 2018. http://dx.doi.org/10.2172/1488326.
Der volle Inhalt der QuelleSchumaker, S. A., Stephen A. Danczyk, Malissa D. Lightfoot und Alan L. Kastengren. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements. Fort Belvoir, VA: Defense Technical Information Center, Juni 2014. http://dx.doi.org/10.21236/ada611313.
Der volle Inhalt der QuelleMones, Ryan M., und Sergio F. Breña. Flexural and Shear Strength of Hollow-core Slabs with Cast-in-place Field Topping. Precast/Prestressed Concrete Institute, 2012. http://dx.doi.org/10.15554/pci.rr.comp-008.
Der volle Inhalt der QuelleROBERTS, JESSE D., und RICHARD A. JEPSEN. Development for the Optional Use of Circular Core Tubes with the High Shear Stress Flume. Office of Scientific and Technical Information (OSTI), März 2001. http://dx.doi.org/10.2172/780295.
Der volle Inhalt der QuelleRyan, J. J., A. Zagorevski, N. R. Cleven, A J Parsons und N. L. Joyce. Architecture of pericratonic Yukon-Tanana terrane in the northern Cordillera. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/326062.
Der volle Inhalt der Quelle