Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Silicotitanates“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Silicotitanates" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Silicotitanates"
Su, Yali, Mari Lou Balmer und Bruce C. Bunker. „Raman Spectroscopic Studies of Silicotitanates“. Journal of Physical Chemistry B 104, Nr. 34 (August 2000): 8160–69. http://dx.doi.org/10.1021/jp0018807.
Der volle Inhalt der QuelleXu, Hongwu, Alexandra Navrotsky, May D. Nyman und Tina M. Nenoff. „Thermochemistry of microporous silicotitanate phases in the Na2O–Cs2O–SiO2–TiO2–H2O system“. Journal of Materials Research 15, Nr. 3 (März 2000): 815–23. http://dx.doi.org/10.1557/jmr.2000.0116.
Der volle Inhalt der QuelleStrelko, V. V., V. V. Milyutin, V. M. Gelis, T. S. Psareva, I. Z. Zhuravlev, T. A. Shaposhnikova, V. G. Mil’grandt und A. I. Bortun. „Sorption of cesium radionuclides onto semicrystalline alkali metal silicotitanates“. Radiochemistry 57, Nr. 1 (Januar 2015): 73–78. http://dx.doi.org/10.1134/s1066362215010117.
Der volle Inhalt der QuelleChitra, S., A. G. Shanmugamani, R. Sudha, S. Kalavathi und Biplob Paul. „Selective removal of cesium and strontium by crystalline silicotitanates“. Journal of Radioanalytical and Nuclear Chemistry 312, Nr. 3 (22.04.2017): 507–15. http://dx.doi.org/10.1007/s10967-017-5249-3.
Der volle Inhalt der QuelleClearfield, A., A. Tripathi und D. Medvedev. „In situX-ray study of hydrothermally prepared titanates and silicotitanates“. Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23.08.2005): c3. http://dx.doi.org/10.1107/s0108767305099873.
Der volle Inhalt der QuelleZheng, Z., C. V. Philip, R. G. Anthony, J. L. Krumhansl, D. E. Trudell und J. E. Miller. „Ion Exchange of Group I Metals by Hydrous Crystalline Silicotitanates“. Industrial & Engineering Chemistry Research 35, Nr. 11 (Januar 1996): 4246–56. http://dx.doi.org/10.1021/ie960073k.
Der volle Inhalt der QuelleClearfield, A., A. Tripathi, D. Medvedev, A. J. Celestian und J. B. Parise. „In situ type study of hydrothermally prepared titanates and silicotitanates“. Journal of Materials Science 41, Nr. 5 (März 2006): 1325–33. http://dx.doi.org/10.1007/s10853-006-7317-x.
Der volle Inhalt der QuelleAnthony, Rayford G., Robert G. Dosch, Ding Gu und C. V. Philip. „Use of silicotitanates for removing cesium and strontium from defense waste“. Industrial & Engineering Chemistry Research 33, Nr. 11 (November 1994): 2702–5. http://dx.doi.org/10.1021/ie00035a020.
Der volle Inhalt der QuelleKaminski, M. D., L. Nuñez, M. Pourfarzaneh und C. Negri. „Cesium separation from contaminated milk using magnetic particles containing crystalline silicotitanates“. Separation and Purification Technology 21, Nr. 1-2 (November 2000): 1–8. http://dx.doi.org/10.1016/s1383-5866(99)00062-3.
Der volle Inhalt der QuelleChitra, S., S. Viswanathan, S. V. S. Rao und P. K. Sinha. „Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes“. Journal of Radioanalytical and Nuclear Chemistry 287, Nr. 3 (17.10.2010): 955–60. http://dx.doi.org/10.1007/s10967-010-0867-z.
Der volle Inhalt der QuelleDissertationen zum Thema "Silicotitanates"
Tratnjek, Toni. „Développement de silicotitanates à porosité hiérarchisée pour la capture du Strontium“. Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0022.
Der volle Inhalt der QuelleThe general idea of this thesis is based on the use of soft material (surfactants, micelles, emulsions) to texture materials with hierarchical porosity. These materials are intended for use in decontamination of effluents and their porous texturing is due to increased reactive properties and the possibility of being used in continuous mode. This texturing methodology is known and well documented for inorganic carbon or silica skeletons whereas to our knowledge there are no examples in the literature concerning silicotitanates or zeolites, which are known sorbents of the intended fission products. The general principle of these syntheses is based on the mixing of two oil-in-water (H/E) emulsions with high internal phase content. When the two emulsions are mixed, the inorganic network begins to grow in the aqueous phase by surrounding the oil drops. Control of parameters such as temperature, pH, or pressure (autoclave for hydrothermal synthesis) which directly regulate the polymerization reaction of the inorganic network should lead to the production of a monolith. All that remains then is to wash the material to release the porosity of the monolith. The emulsions will be characterized by optical microscopy to evaluate the size of the oil drops, while the materials will be characterized by gas adsorption and SAXS to know the properties of the mesopores network, by SEM to assess macropore size and by XRD to assess skeletal crystallinity
Milcent, Théo. „Mise en place d'une nouvelle méthodologie d'évaluation d'un échangeur d'ions minéral du point de vue de sa sélectivité : Cas particulier de l'optimisation structurale et microstructurale d'un silicotitanate cristallin (CST), appliqué à la décontamination d'effluents simultanément contaminés en Sr2+ et Cs+“. Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0010.
Der volle Inhalt der QuelleAlumino, titano and zircono-silicates zeolitic materials exhibit good performances in applications such as catalysis, gas separation and confinement. In addition, these kind of materials has been successfully used in different fields like petrochemistry, agriculture, medical, energy storage and nuclear decontamination. Their ion exchange properties make them very selective for radionuclides extraction (e.g. cesium or strontium) from wastewater treatment. Their composition (Al/Si, Ti/Si, Zr/Si ratio; “metal” nature and charge; labile ion nature, charge, size and concentration) and their framework structure (amorphous, 3D cage or tunnel) affect the ion exchange mechanism (i.e. kinetics, specificity, stability). These parameters may also modify the sorption capacity and the ion selectivity. In the present PhD, the relationship between structure and properties of several silicates will be studied in order to better understand their sorption mechanisms. To this end, the synthesis of different silicates will be performed and optimized. Then, their structures, morphologies and compositions will be analyzed by the application of different characterization techniques. Finally, this materials will be implemented to effluent treatments (i.e. model effluent and simulate real effluent) to evaluate their performances and find the connection between the structural and textural properties
Chen, Tzu-Yu. „Immobilisation of caesium from crystalline silicotitanate by hot isostatic pressing“. Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3712/.
Der volle Inhalt der QuelleKim, Sung Hyun. „Ion exchange kinetics of cesium for various reaction designs using crystalline silicotitanate, UOP IONSIV IE-911“. Texas A&M University, 2003. http://hdl.handle.net/1969.1/282.
Der volle Inhalt der QuelleBuchteile zum Thema "Silicotitanates"
Fox, K. M., F. C. Johnson und T. B. Edwards. „Incorporation of Mono Sodium Titanate and Crystalline Silicotitanate Feeds in High Level Nuclear Waste Glass“. In Ceramic Transactions Series, 149–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144527.ch15.
Der volle Inhalt der QuelleMiller, James E., Norman E. Brown, James L. Krumhansl, Daniel E. Trudell, Rayford G. Anthony und C. V. Philip. „Development and Properties of Cesium Selective Crystalline Silicotitanate (CST) Ion Exchangers for Radioactive Waste Applications“. In Science and Technology for Disposal of Radioactive Tank Wastes, 269–86. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1543-6_21.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Silicotitanates"
Mimura, Hitoshi, Minoru Matsukura, Tomoya Kitagawa, Fumio Kurosaki, Akira Kirishima, Daisuke Akiyama und Nobuaki Sato. „Evaluation of Adsorption Properties of U(VI) for Various Inorganic Adsorbents“. In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81338.
Der volle Inhalt der QuelleDenton, Mark S., und Mercouri G. Kanatzidis. „Innovative Highly Selective Removal of Cesium and Strontium Utilizing a Newly Developed Class of Inorganic Ion Specific Media“. In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16221.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Silicotitanates"
Balmer, M. L., und B. C. Bunker. Waste forms based on Cs-loaded silicotitanates. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/86952.
Der volle Inhalt der QuelleHarbour, J. R., und M. K. Andrews. Glass formulation requirements for DWPF coupled operations using crystalline silicotitanates. Office of Scientific and Technical Information (OSTI), Januar 1997. http://dx.doi.org/10.2172/491474.
Der volle Inhalt der QuelleAndrews, M. K., und J. R. Harbour. Glass formulation requirements for Hanford coupled operations using crystalline silicotitanates (CST). Office of Scientific and Technical Information (OSTI), Mai 1997. http://dx.doi.org/10.2172/554132.
Der volle Inhalt der QuelleDosch, R. G., E. A. Klavetter, H. P. Stephens, N. E. Brown und R. G. Anthony. Crystalline silicotitanates--new ion exchanger for selective removal of cesium and strontium from radwastes. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/369706.
Der volle Inhalt der QuelleMcCabe, D. J. Crystalline silicotitanate examination results. Office of Scientific and Technical Information (OSTI), Mai 1995. http://dx.doi.org/10.2172/565003.
Der volle Inhalt der QuelleDARREL, WALKER. Digestion of Crystalline Silicotitanate (CST). Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/837905.
Der volle Inhalt der QuelleSchlahta, S. N., R. Carreon und J. A. Gentilucci. Crystalline silicotitanate gate review analysis. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/565556.
Der volle Inhalt der QuelleWalker, D. D. Modeling of Crystalline Silicotitanate Ion Exchange Columns. Office of Scientific and Technical Information (OSTI), März 1999. http://dx.doi.org/10.2172/4975.
Der volle Inhalt der QuelleBalmer, Marie Lou, Tina Nenoff und Navrotsky. New Silicotitanate Waste Forms; Development and Characterization. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/829958.
Der volle Inhalt der QuelleBalmer, Mari Lou, Tina Nenoff, Alexandra Navrotsky und Yali Su. New Silicotitanate Waste Forms; Development and Characterization. Office of Scientific and Technical Information (OSTI), Juni 2000. http://dx.doi.org/10.2172/829961.
Der volle Inhalt der Quelle