Inhaltsverzeichnis

  1. Zeitschriftenartikel

Auswahl der wissenschaftlichen Literatur zum Thema „Single to multiview conversion“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Single to multiview conversion" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Single to multiview conversion"

1

Lu, Shao-Ping, Sibo Feng, Beerend Ceulemans, Miao Wang, Rui Zhong, and Adrian Munteanu. "Multiview conversion of 2D cartoon images." Communications in Information and Systems 16, no. 4 (2016): 229–54. http://dx.doi.org/10.4310/cis.2016.v16.n4.a2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chapiro, Alexandre, Simon Heinzle, Tunç Ozan Aydın, et al. "Optimizing stereo-to-multiview conversion for autostereoscopic displays." Computer Graphics Forum 33, no. 2 (2014): 63–72. http://dx.doi.org/10.1111/cgf.12291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gu, Yi, and Kang Li. "Entropy-Based Multiview Data Clustering Analysis in the Era of Industry 4.0." Wireless Communications and Mobile Computing 2021 (April 30, 2021): 1–8. http://dx.doi.org/10.1155/2021/9963133.

Der volle Inhalt der Quelle
Annotation:
In the era of Industry 4.0, single-view clustering algorithm is difficult to play a role in the face of complex data, i.e., multiview data. In recent years, an extension of the traditional single-view clustering is multiview clustering technology, which is becoming more and more popular. Although the multiview clustering algorithm has better effectiveness than the single-view clustering algorithm, almost all the current multiview clustering algorithms usually have two weaknesses as follows. (1) The current multiview collaborative clustering strategy lacks theoretical support. (2) The weight of
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kanaan-Izquierdo, Samir, Andrey Ziyatdinov, Maria Araceli Burgueño, and Alexandre Perera-Lluna. "Multiview: a software package for multiview pattern recognition methods." Bioinformatics 35, no. 16 (2018): 2877–79. http://dx.doi.org/10.1093/bioinformatics/bty1039.

Der volle Inhalt der Quelle
Annotation:
Abstract Summary Multiview datasets are the norm in bioinformatics, often under the label multi-omics. Multiview data are gathered from several experiments, measurements or feature sets available for the same subjects. Recent studies in pattern recognition have shown the advantage of using multiview methods of clustering and dimensionality reduction; however, none of these methods are readily available to the extent of our knowledge. Multiview extensions of four well-known pattern recognition methods are proposed here. Three multiview dimensionality reduction methods: multiview t-distributed s
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Qingjun, Haiyan Lv, Jun Yue, and Eugene Mitchell. "Supervised multiview learning based on simultaneous learning of multiview intact and single view classifier." Neural Computing and Applications 28, no. 8 (2016): 2293–301. http://dx.doi.org/10.1007/s00521-016-2189-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shin, Hong-Chang, Jinwhan Lee, Gwangsoon Lee, and Namho Hur. "Stereo-To-Multiview Conversion System Using FPGA and GPU Device." Journal of Broadcast Engineering 19, no. 5 (2014): 616–26. http://dx.doi.org/10.5909/jbe.2014.19.5.616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kuo, Pin-Chen, Kuan-Lun Lo, Huan-Kai Tseng, Kuan-Ting Lee, Bin-Da Liu, and Jar-Ferr Yang. "Stereoview to Multiview Conversion Architecture for Auto-Stereoscopic 3D Displays." IEEE Transactions on Circuits and Systems for Video Technology 28, no. 11 (2018): 3274–87. http://dx.doi.org/10.1109/tcsvt.2017.2732061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pei, Jifang, Weibo Huo, Chenwei Wang, et al. "Multiview Deep Feature Learning Network for SAR Automatic Target Recognition." Remote Sensing 13, no. 8 (2021): 1455. http://dx.doi.org/10.3390/rs13081455.

Der volle Inhalt der Quelle
Annotation:
Multiview synthetic aperture radar (SAR) images contain much richer information for automatic target recognition (ATR) than a single-view one. It is desirable to establish a reasonable multiview ATR scheme and design effective ATR algorithm to thoroughly learn and extract that classification information, so that superior SAR ATR performance can be achieved. Hence, a general processing framework applicable for a multiview SAR ATR pattern is first given in this paper, which can provide an effective approach to ATR system design. Then, a new ATR method using a multiview deep feature learning netw
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pei, Jifang, Zhiyong Wang, Xueping Sun, et al. "FEF-Net: A Deep Learning Approach to Multiview SAR Image Target Recognition." Remote Sensing 13, no. 17 (2021): 3493. http://dx.doi.org/10.3390/rs13173493.

Der volle Inhalt der Quelle
Annotation:
Synthetic aperture radar (SAR) is an advanced microwave imaging system of great importance. The recognition of real-world targets from SAR images, i.e., automatic target recognition (ATR), is an attractive but challenging issue. The majority of existing SAR ATR methods are designed for single-view SAR images. However, multiview SAR images contain more abundant classification information than single-view SAR images, which benefits automatic target classification and recognition. This paper proposes an end-to-end deep feature extraction and fusion network (FEF-Net) that can effectively exploit r
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Guo, Peng, Guoqi Xie, and Renfa Li. "Object Detection Using Multiview CCA-Based Graph Spectral Learning." Journal of Circuits, Systems and Computers 29, no. 02 (2019): 2050022. http://dx.doi.org/10.1142/s021812662050022x.

Der volle Inhalt der Quelle
Annotation:
Recent years have witnessed a surge of interest in semi-supervised learning-based object detection. Object detection is usually accomplished by classification methods. Different from conventional methods, those usually adopt a single feature view or concatenate multiple features into a long feature vector, multiview graph spectral learning can attain simultaneously object classification and weight learning of multiview. However, most existing multiview graph spectral learning (GSL) methods are only concerned with the complementarities between multiple views but not with correlation information
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!