Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sitinakite“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sitinakite" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sitinakite"
Panikorovskii, Taras L., Galina O. Kalashnikova, Anatoly I. Nikolaev, Igor A. Perovskiy, Ayya V. Bazai, Victor N. Yakovenchuk, Vladimir N. Bocharov, Natalya A. Kabanova und Sergey V. Krivovichev. „Ion-Exchange-Induced Transformation and Mechanism of Cooperative Crystal Chemical Adaptation in Sitinakite: Theoretical and Experimental Study“. Minerals 12, Nr. 2 (15.02.2022): 248. http://dx.doi.org/10.3390/min12020248.
Der volle Inhalt der QuelleMilne, Nicholas A., Christopher S. Griffith, John V. Hanna, Maria Skyllas-Kazacos und Vittorio Luca. „Lithium Intercalation into the Titanosilicate Sitinakite“. Chemistry of Materials 18, Nr. 14 (Juli 2006): 3192–202. http://dx.doi.org/10.1021/cm0523337.
Der volle Inhalt der QuelleDyer, Alan, Jon Newton, Luke O’Brien und Scott Owens. „Studies on a synthetic sitinakite-type silicotitanate cation exchanger“. Microporous and Mesoporous Materials 117, Nr. 1-2 (Januar 2009): 304–8. http://dx.doi.org/10.1016/j.micromeso.2008.07.003.
Der volle Inhalt der QuelleLuca, Vittorio, John V. Hanna, Mark E. Smith, Michael James, David R. G. Mitchell und John R. Bartlett. „Nb-substitution and Cs+ ion-exchange in the titanosilicate sitinakite“. Microporous and Mesoporous Materials 55, Nr. 1 (August 2002): 1–13. http://dx.doi.org/10.1016/s1387-1811(02)00353-0.
Der volle Inhalt der QuelleTripathi, Akhilesh, Dmitri G. Medvedev, May Nyman und Abraham Clearfield. „Selectivity for Cs and Sr in Nb-substituted titanosilicate with sitinakite topology“. Journal of Solid State Chemistry 175, Nr. 1 (Oktober 2003): 72–83. http://dx.doi.org/10.1016/s0022-4596(03)00145-2.
Der volle Inhalt der QuelleThorogood, Gordon J., Brendan J. Kennedy, Christopher S. Griffith, Maragaret M. Elcombe, Maxim Avdeev, John V. Hanna, Samantha K. Thorogood und Vittorio Luca. „Structure and Phase Transformations in the Titanosilicate, Sitinakite. The Importance of Water“. Chemistry of Materials 22, Nr. 14 (27.07.2010): 4222–31. http://dx.doi.org/10.1021/cm100727h.
Der volle Inhalt der QuellePerovskiy, Igor A., Elena V. Khramenkova, Evgeny A. Pidko, Pavel V. Krivoshapkin, Alexandr V. Vinogradov und Elena F. Krivoshapkina. „Efficient extraction of multivalent cations from aqueous solutions into sitinakite-based sorbents“. Chemical Engineering Journal 354 (Dezember 2018): 727–39. http://dx.doi.org/10.1016/j.cej.2018.08.030.
Der volle Inhalt der QuelleMedvedev, Dmitri G., Akhilesh Tripathi, Abraham Clearfield, Aaron J. Celestian, John B. Parise und Jonathan Hanson. „Crystallization of Sodium Titanium Silicate with Sitinakite Topology: Evolution from the Sodium Nonatitanate Phase“. Chemistry of Materials 16, Nr. 19 (September 2004): 3659–66. http://dx.doi.org/10.1021/cm049479a.
Der volle Inhalt der QuelleGainey, Seth R., Matheus T. Lauar, Christopher T. Adcock, Jacimaria R. Batista, Kenneth Czerwinski und David W. Hatchett. „The influence of thermal processing on the sorption of Cs and Sr by sitinakite“. Microporous and Mesoporous Materials 296 (April 2020): 109995. http://dx.doi.org/10.1016/j.micromeso.2019.109995.
Der volle Inhalt der QuelleCelestian, A. J., M. Powers und S. Rader. „In situ Raman spectroscopic study of transient polyhedral distortions during cesium ion exchange into sitinakite“. American Mineralogist 98, Nr. 7 (01.07.2013): 1153–61. http://dx.doi.org/10.2138/am.2013.4349.
Der volle Inhalt der QuelleDissertationen zum Thema "Sitinakite"
Tratnjek, Toni. „Développement de silicotitanates à porosité hiérarchisée pour la capture du Strontium“. Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0022.
Der volle Inhalt der QuelleThe general idea of this thesis is based on the use of soft material (surfactants, micelles, emulsions) to texture materials with hierarchical porosity. These materials are intended for use in decontamination of effluents and their porous texturing is due to increased reactive properties and the possibility of being used in continuous mode. This texturing methodology is known and well documented for inorganic carbon or silica skeletons whereas to our knowledge there are no examples in the literature concerning silicotitanates or zeolites, which are known sorbents of the intended fission products. The general principle of these syntheses is based on the mixing of two oil-in-water (H/E) emulsions with high internal phase content. When the two emulsions are mixed, the inorganic network begins to grow in the aqueous phase by surrounding the oil drops. Control of parameters such as temperature, pH, or pressure (autoclave for hydrothermal synthesis) which directly regulate the polymerization reaction of the inorganic network should lead to the production of a monolith. All that remains then is to wash the material to release the porosity of the monolith. The emulsions will be characterized by optical microscopy to evaluate the size of the oil drops, while the materials will be characterized by gas adsorption and SAXS to know the properties of the mesopores network, by SEM to assess macropore size and by XRD to assess skeletal crystallinity
Milcent, Théo. „Mise en place d'une nouvelle méthodologie d'évaluation d'un échangeur d'ions minéral du point de vue de sa sélectivité : Cas particulier de l'optimisation structurale et microstructurale d'un silicotitanate cristallin (CST), appliqué à la décontamination d'effluents simultanément contaminés en Sr2+ et Cs+“. Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0010.
Der volle Inhalt der QuelleAlumino, titano and zircono-silicates zeolitic materials exhibit good performances in applications such as catalysis, gas separation and confinement. In addition, these kind of materials has been successfully used in different fields like petrochemistry, agriculture, medical, energy storage and nuclear decontamination. Their ion exchange properties make them very selective for radionuclides extraction (e.g. cesium or strontium) from wastewater treatment. Their composition (Al/Si, Ti/Si, Zr/Si ratio; “metal” nature and charge; labile ion nature, charge, size and concentration) and their framework structure (amorphous, 3D cage or tunnel) affect the ion exchange mechanism (i.e. kinetics, specificity, stability). These parameters may also modify the sorption capacity and the ion selectivity. In the present PhD, the relationship between structure and properties of several silicates will be studied in order to better understand their sorption mechanisms. To this end, the synthesis of different silicates will be performed and optimized. Then, their structures, morphologies and compositions will be analyzed by the application of different characterization techniques. Finally, this materials will be implemented to effluent treatments (i.e. model effluent and simulate real effluent) to evaluate their performances and find the connection between the structural and textural properties
Buchteile zum Thema "Sitinakite"
Perovskiy, Igor A. „The Effect of Sitinakite Crystallinity Degree and Textural Characteristics on Its Sorption Properties“. In Springer Proceedings in Earth and Environmental Sciences, 175–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00925-0_27.
Der volle Inhalt der Quelle