Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „SIZING OF SVC“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "SIZING OF SVC" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "SIZING OF SVC"
Mohd Ali, Nur Zahirah, Ismail Musirin und Hasmaini Mohamad. „Effect of SVC installation on loss and voltage in power system congestion management“. Indonesian Journal of Electrical Engineering and Computer Science 14, Nr. 1 (01.04.2019): 428. http://dx.doi.org/10.11591/ijeecs.v14.i1.pp428-435.
Der volle Inhalt der QuelleAbdullah, Ali Najim, Ahmed Majeed Ghadhban, Hayder Salim Hameed und Husham Idan Hussein. „Enhancement the stability of power system using optimal location of FACTS devices“. Indonesian Journal of Electrical Engineering and Computer Science 18, Nr. 2 (01.05.2020): 648. http://dx.doi.org/10.11591/ijeecs.v18.i2.pp648-655.
Der volle Inhalt der QuelleDuraisamy, Prasanth, und Arul Ponnusamy. „Power System Performance Improvement by Optimal Placement and Sizing of SVC using Genetic Algorithm“. International Journal of Applied Power Engineering (IJAPE) 6, Nr. 2 (01.08.2017): 55. http://dx.doi.org/10.11591/ijape.v6.i2.pp55-62.
Der volle Inhalt der QuelleDuraisamy, Prasanth, und Arul Ponnusamy. „Power System Performance Improvement by Optimal Placement and Sizing of SVC using Genetic Algorithm“. International Journal of Applied Power Engineering (IJAPE) 6, Nr. 2 (01.08.2017): 56. http://dx.doi.org/10.11591/ijape.v6.i2.pp56-63.
Der volle Inhalt der QuelleSuyono, Hadi, Rini Nur Hasanah und Paramita Dwi Putri Pranyata. „Optimization of the Thyristor Controlled Phase Shifting Transformer using PSO Algorithm“. International Journal of Electrical and Computer Engineering (IJECE) 8, Nr. 6 (01.12.2018): 5472. http://dx.doi.org/10.11591/ijece.v8i6.pp5472-5483.
Der volle Inhalt der QuelleSantamaria-Henao, Nicolas, Oscar Danilo Montoya und César Leonardo Trujillo-Rodríguez. „Optimal Siting and Sizing of FACTS in Distribution Networks Using the Black Widow Algorithm“. Algorithms 16, Nr. 5 (27.04.2023): 225. http://dx.doi.org/10.3390/a16050225.
Der volle Inhalt der QuelleThasnas, Natakorn, und Apirat Siritaratiwat. „Static Voltage Stability Margin Enhancement Using Shunt Capacitor, SVC and STATCOM“. Applied Mechanics and Materials 781 (August 2015): 288–91. http://dx.doi.org/10.4028/www.scientific.net/amm.781.288.
Der volle Inhalt der QuelleHasma Abdullah, Nor Rul, Mahaletchumi A. P Morgan, Mahfuzah Mustafa, Rosdiyana Samad und Dwi Pebrianti. „Multi-Objective Evolutionary Programming for Static VAR Compensator (SVC) in Power System Considering Contingencies (N-m)“. International Journal of Power Electronics and Drive Systems (IJPEDS) 9, Nr. 2 (01.06.2018): 880. http://dx.doi.org/10.11591/ijpeds.v9.i2.pp880-888.
Der volle Inhalt der QuelleMohd Ali, N. Z., I. Musirin und H. Mohamad. „Clonal evolutionary particle swarm optimization for congestion management and compensation scheme in power system“. Indonesian Journal of Electrical Engineering and Computer Science 16, Nr. 2 (01.11.2019): 591. http://dx.doi.org/10.11591/ijeecs.v16.i2.pp591-598.
Der volle Inhalt der QuellePrasath, R. Arun, M. Vimalraj, M. Riyas Ahamed und K. Srinivasa Rao. „Power System Loadability Maximization by Optimal Placement of Multiple-Type FACTS Devices Using PSO Based GUI“. Advanced Materials Research 984-985 (Juli 2014): 1286–94. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1286.
Der volle Inhalt der QuelleDissertationen zum Thema "SIZING OF SVC"
Gopalakrishnan, Harish. „Energy Reduction for Asynchronous Circuits in SoC Applications“. Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1324264498.
Der volle Inhalt der QuelleStackler, Caroline. „Transformateurs électroniques pour applications ferroviaires“. Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0015.
Der volle Inhalt der QuelleCurrent on-board converters, running on AC catenaries, are mainly composed by a low frequency transformer, then rectifiers, supplying traction motors through three-phase inverters. Due to volume and mass constraints on the converter, the efficiency of the transformer is limited. Moreover, this transformer is quite bulky and heavy. Thanks to the development of high voltage and high power semiconductors, such as Si IGBTs or SiC MOSFETs, and of medium frequency transformer, i.e. operating at a few kilohertz, new topologies of on-board converters, named Power Electronic Traction Transformer (PETT), are studied. Though several structures have been studied in the literature, they have never been compared. The main objective of this thesis is, thus, to develop a methodology to size PETT topologies, in order to compare them. In the first chapter, a state of the art of the PETT structures proposed in literature is presented. The second chapter is dedicated to the comparison of indirect topologies. A methodology, optimising the sizing of each structure to maximise its efficiency under mass and volume constraints, is developed. It is applied on topologies using SiC MOSFETs, contrary to Si IGBT structures developed in the literature. The magnetizing inductance is also considered to insure soft switching and reduce the losses. In the third chapter, an novel active filter, included in the DC-DCs of the converter, is proposed. The aim is to reduce the volume of the filtering capacitors on the intermediate buses, and thus, of the entire converter, without impacting the intrinsic reliability of the converter. Its impact on the losses of the DC-DC is studied. The last chapter deals with the interactions between the on-board converter and the infrastructure. Thus, the 25 kV-50 Hz railway network is modeled. It includes a novel circuit, modelling the skin effect in the catenary. Some resonances, dependant on the sector geometry and the train position, are highlighted in the impedance seen by a train. Moreover, the models are implemented in a numerical simulator to supply a small scale mock-up of a PETT. PHIL tests have, a priori, never been carried on a PETT. A conclusion and some perspectives of future work close thisdissertation
Brandelero, Julio Cezar. „Conception et réalisation d'un convertisseur multicellulaire DC/DC isolé pour application aéronautique“. Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/14246/1/Brandelero.pdf.
Der volle Inhalt der QuellePANDEY, PRASHANT. „APPLICATION OF PARTICLE SWARM OPTIMIZATION TECHNIQUE IN OPTIMAL LOCATION AND SIZING OF SVC“. Thesis, 2013. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15674.
Der volle Inhalt der Quelle(9158723), Supriyo Maji. „Efficient Minimum Cycle Mean Algorithms And Their Applications“. Thesis, 2020.
Den vollen Inhalt der Quelle findenMinimum cycle mean (MCM) is an important concept in directed graphs. From clock period optimization, timing analysis to layout optimization, minimum cycle mean algorithms have found widespread use in VLSI system design optimization. With transistor size scaling to 10nm and below, complexities and size of the systems have grown rapidly over the last decade. Scalability of the algorithms both in terms of their runtime and memory usage is therefore important.
Among the few classical MCM algorithms, the algorithm by Young, Tarjan, and Orlin (YTO), has been particularly popular. When implemented with a binary heap, the YTO algorithm has the best runtime performance although it has higher asymptotic time complexity than Karp's algorithm. However, as an efficient implementation of YTO relies on data redundancy, its memory usage is higher and could be a prohibitive factor in large size problems. On the other hand, a typical implementation of Karp's algorithm can also be memory hungry. An early termination technique from Hartmann and Orlin (HO) can be directly applied to Karp's algorithm to improve its runtime performance and memory usage. Although not as efficient as YTO in runtime, HO algorithm has much less memory usage than YTO. We propose several improvements to HO algorithm. The proposed algorithm has comparable runtime performance to YTO for circuit graphs and dense random graphs while being better than HO algorithm in memory usage.
Minimum balancing of a directed graph is an application of the minimum cycle mean algorithm. Minimum balance algorithms have been used to optimally distribute slack for mitigating process variation induced timing violation issues in clock network. In a conventional minimum balance algorithm, the principal subroutine is that of finding MCM in a graph. In particular, the minimum balance algorithm iteratively finds the minimum cycle mean and the corresponding minimum-mean cycle, and uses the mean and cycle to update the graph by changing edge weights and reducing the graph size. The iterations terminate when the updated graph is a single node. Studies have shown that the bottleneck of the iterative process is the graph update operation as previous approaches involved updating the entire graph. We propose an improvement to the minimum balance algorithm by performing fewer changes to the edge weights in each iteration, resulting in better efficiency.
We also apply the minimum cycle mean algorithm in latency insensitive system design. Timing violations can occur in high performance communication links in system-on-chips (SoCs) in the late stages of the physical design process. To address the issues, latency insensitive systems (LISs) employ pipelining in the communication channels through insertion of the relay stations. Although the functionality of a LIS is robust with respect to the communication latencies, such insertion can degrade system throughput performance. Earlier studies have shown that the proper sizing of buffer queues after relay station insertion could eliminate such performance loss. However, solving the problem of maximum performance buffer queue sizing requires use of mixed integer linear programming (MILP) of which runtime is not scalable. We formulate the problem as a parameterized graph optimization problem where for every communication channel there is a parameterized edge with buffer counts as the edge weight. We then use minimum cycle mean algorithm to determine from which edges buffers can be removed safely without creating negative cycles. This is done iteratively in the similar style as the minimum balance algorithm. Experimental results suggest that the proposed approach is scalable. Moreover, quality of the solution is observed to be as good as that of the MILP based approach.
Bücher zum Thema "SIZING OF SVC"
Yarlagadda, Venu, A. Giriprasad, Lakshminarayana Gadupudi, O. Sobhana und M. Naga Jyothi, Hrsg. Optimal Placement and Sizing of SVC in Power Systems for Voltage Stability Enhancement. AkiNik Publications, 2021. http://dx.doi.org/10.22271/ed.book.1358.
Der volle Inhalt der QuelleBuchteile zum Thema "SIZING OF SVC"
Libby, Alex. „Sizing SVG“. In Beginning SVG, 95–123. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3760-1_4.
Der volle Inhalt der QuelleNakao, Wataru, Shihomi Abe und Kotoji Ando. „SiC Nanometer Sizing Effect on Self Healing Ability of Structural Ceramics“. In Mechanical Properties and Performance of Engineering Ceramics and Composites IV, 137–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470584262.ch12.
Der volle Inhalt der QuelleNguyen, Khai Phuc, Dieu Ngoc Vo und Goro Fujita. „Hybrid Cuckoo Search Algorithm for Optimal Placement and Sizing of Static VAR Compensator“. In Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics, 288–326. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9644-0.ch011.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "SIZING OF SVC"
Bhattacharya, Bidishna, Niladri Chakraborty und Kamal K. Mandal. „Multiobjective optimal placement and sizing of SVC using cultural algorithm“. In 2014 Annual IEEE India Conference (INDICON). IEEE, 2014. http://dx.doi.org/10.1109/indicon.2014.7030625.
Der volle Inhalt der QuelleJumaat, Siti Amely, Ismail Musirin, Muhammad Mutadha Othman und Hazlie Mokhlis. „Optimal Location and Sizing of SVC Using Particle Swarm Optimization Technique“. In 2011 First International Conference on Informatics and Computational Intelligence (ICI). IEEE, 2011. http://dx.doi.org/10.1109/ici.2011.58.
Der volle Inhalt der QuelleKhai Phuc Nguyen, Goro Fujita, Nguyen Duc Tuyen, Vo Ngoc Dieu und Toshihisa Funabashi. „Optimal placement and sizing of SVC by using various meta-heuristic optimization methods“. In 2014 International Conference on Power Engineering and Renewable Energy (ICPERE). IEEE, 2014. http://dx.doi.org/10.1109/icpere.2014.7067226.
Der volle Inhalt der QuelleBalachennaiah, P., P. Harshavardhan Reddy und Upendram Naveen Kumar Raju. „A novel algorithm for voltage stability augmentation through optimal placement and sizing of SVC“. In 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES). IEEE, 2015. http://dx.doi.org/10.1109/spices.2015.7091477.
Der volle Inhalt der QuelleAgrawal, Rahul, S. K. Bharadwaj und D. P. Kothari. „Optimal location and sizing of SVC considering transmission loss and installation cost using TLBO“. In 2015 Annual IEEE India Conference (INDICON). IEEE, 2015. http://dx.doi.org/10.1109/indicon.2015.7443110.
Der volle Inhalt der QuelleNadeem, Muhammad, M. Zulqarnain Zeb, Kashif Imran und Abdul Kashif Janjua. „Optimal Sizing and Allocation of SVC and TCSC for reactive Power planning in Meshed Network“. In 2019 International Conference on Applied and Engineering Mathematics (ICAEM). IEEE, 2019. http://dx.doi.org/10.1109/icaem.2019.8853728.
Der volle Inhalt der QuelleDixit, Shishir, Laxmi Srivastava und Ganga Agnihotri. „Optimal Location and Sizing of SVC for Minimization of Power Loss and Voltage Deviation Using NSGA II“. In 2014 International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2014. http://dx.doi.org/10.1109/csnt.2014.200.
Der volle Inhalt der QuelleUdgir, Shraddha, Laxmi Srivastava und Manjaree Pandit. „Optimal placement and sizing of SVC for loss minimization and voltage security improvement using differential evolution algorithm“. In 2014 Recent Advances and Innovations in Engineering (ICRAIE). IEEE, 2014. http://dx.doi.org/10.1109/icraie.2014.6909310.
Der volle Inhalt der QuelleNadeem, Muhammad, M. Zulqarnain Zeb, Kashif Imran und Abdul Kashif Janjua. „Optimal Sizing and Allocation of SVC and TCSC in Transmission Network by combined Sensitivity index and PSO“. In 2019 International Conference on Applied and Engineering Mathematics (ICAEM). IEEE, 2019. http://dx.doi.org/10.1109/icaem.2019.8853759.
Der volle Inhalt der QuelleBashir Jannat, Mohamed, und Alexandar Savic. „Using of Genetic Algorithms (GAs) to find the optimal location and sizing of static VAR compensator (SVC) to minimize real power loss“. In ICEMIS'21: The 7th International Conference on Engineering & MIS 2021. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3492547.3492627.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "SIZING OF SVC"
Rose und Luo. L52069 Guided Wave Sizing and Discrimination for SCC Magnetostriction ILI Inspection. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2003. http://dx.doi.org/10.55274/r0011179.
Der volle Inhalt der QuelleSelby und Spanner. L52004 Sizing Stress Corrosion Cracking in Pipeline Specimens from the Outside Surface. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2005. http://dx.doi.org/10.55274/r0011064.
Der volle Inhalt der QuelleHayford. L51566 Ultralow Frequency Eddy Current Instrument for the Detection and Sizing of Stress Corrosion Cracks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 1988. http://dx.doi.org/10.55274/r0010601.
Der volle Inhalt der QuelleMalinowski, Owen, Jason Van Velsor und Scott Riccardella. PR-335-203810-R02 Review of X-Ray Computed Tomography for Nondestructive Evaluation of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2021. http://dx.doi.org/10.55274/r0012075.
Der volle Inhalt der QuelleUnknown, Author. L51630 In-Line Detection and Sizing of Stress Corrosion Cracks Using EMAT Ultrasonics. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 1990. http://dx.doi.org/10.55274/r0010616.
Der volle Inhalt der QuelleAlders, George. L51630A In-Line Detection and Sizing of Stress Corrosion Cracks Using EMAT Ultrasonics - Phase II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 1991. http://dx.doi.org/10.55274/r0011370.
Der volle Inhalt der QuelleRiccardella, Scott, und Jason Van Velsor. PR-335-173844-R01 NDE Crack Depth Sizing Performance Validation for Multiple UT Techniques. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 2020. http://dx.doi.org/10.55274/r0011676.
Der volle Inhalt der QuelleNeuert, Mark, und Smitha Koduru. PR-244-173856-R01 In-line Inspection Crack Tool Reliability and Performance Evaluation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 2019. http://dx.doi.org/10.55274/r0011599.
Der volle Inhalt der QuelleGinzel. L51748 Detection of Stress Corrosion Induced Toe Cracks-Advancement of the Developed Technique. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 1996. http://dx.doi.org/10.55274/r0010659.
Der volle Inhalt der QuelleTandon, Samarth, Ming Gao und Ravi Krishnamurthy. PR-328-083501-R01 Evaluation of EMAT Tool Performance and Reliability by Monitoring Industry Experience. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2017. http://dx.doi.org/10.55274/r0011442.
Der volle Inhalt der Quelle