Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Skeletal muscle fibrosis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Skeletal muscle fibrosis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Skeletal muscle fibrosis"
Mahdy, Mohamed A. A. „Skeletal muscle fibrosis: an overview“. Cell and Tissue Research 375, Nr. 3 (12.11.2018): 575–88. http://dx.doi.org/10.1007/s00441-018-2955-2.
Der volle Inhalt der QuelleAmani, Majid, Masoud Rahmati, Mohammad Fathi und Hasan Ahmadvand. „Reduce Muscle Fibrosis through Exercise via NRG1/ErbB2 Modification in Diabetic Rats“. Journal of Diabetes Research 2020 (14.05.2020): 1–8. http://dx.doi.org/10.1155/2020/6053161.
Der volle Inhalt der QuelleMeyer, Gretchen A., und Richard L. Lieber. „Skeletal muscle fibrosis develops in response to desmin deletion“. American Journal of Physiology-Cell Physiology 302, Nr. 11 (01.06.2012): C1609—C1620. http://dx.doi.org/10.1152/ajpcell.00441.2011.
Der volle Inhalt der QuelleZhao, Na, Bo Liu, Si-Wen Liu, Wei Zhang, Hua-Nan Li, Geng Pang, Xiong-Fei Luo und Jin-Gui Wang. „The Combination of Electroacupuncture and Massage Therapy Alleviates Myofibroblast Transdifferentiation and Extracellular Matrix Production in Blunt Trauma-Induced Skeletal Muscle Fibrosis“. Evidence-Based Complementary and Alternative Medicine 2021 (07.07.2021): 1–10. http://dx.doi.org/10.1155/2021/5543468.
Der volle Inhalt der QuelleLieber, Richard L., und Samuel R. Ward. „Cellular Mechanisms of Tissue Fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis“. American Journal of Physiology-Cell Physiology 305, Nr. 3 (01.08.2013): C241—C252. http://dx.doi.org/10.1152/ajpcell.00173.2013.
Der volle Inhalt der QuelleMoyer, Adam L., und Kathryn R. Wagner. „Regeneration versus fibrosis in skeletal muscle“. Current Opinion in Rheumatology 23, Nr. 6 (November 2011): 568–73. http://dx.doi.org/10.1097/bor.0b013e32834bac92.
Der volle Inhalt der QuelleLi, Zhao Bo, Helen D. Kollias und Kathryn R. Wagner. „Myostatin Directly Regulates Skeletal Muscle Fibrosis“. Journal of Biological Chemistry 283, Nr. 28 (03.05.2008): 19371–78. http://dx.doi.org/10.1074/jbc.m802585200.
Der volle Inhalt der QuellePidlisetskyy, Andriy, Serhii Savosko, Igor Gayovich, Oleksii Dolhopolov und Volodymyr Biliavskyi. „THE ULTRASONOGRAPHY EXAMINATION OF SKELETAL MUSCLES IN TRAUMATIC ISCHEMIA (EXPERIMENTAL STUDY)“. Wiadomości Lekarskie 76, Nr. 1 (Januar 2023): 175–81. http://dx.doi.org/10.36740/wlek202301124.
Der volle Inhalt der QuelleChen, Wan-Jing, I.-Hsuan Lin, Chien-Wei Lee und Yi-Fan Chen. „Aged Skeletal Muscle Retains the Ability to Remodel Extracellular Matrix for Degradation of Collagen Deposition after Muscle Injury“. International Journal of Molecular Sciences 22, Nr. 4 (20.02.2021): 2123. http://dx.doi.org/10.3390/ijms22042123.
Der volle Inhalt der QuelleTonogai, Ichiro, und Ichiro Tonogai. „Influence of Platelet Rich Plasma on the Skeletal Muscle Fibrosis after Limb Lengthening in Mice“. Foot & Ankle Orthopaedics 5, Nr. 4 (01.10.2020): 2473011420S0046. http://dx.doi.org/10.1177/2473011420s00468.
Der volle Inhalt der QuelleDissertationen zum Thema "Skeletal muscle fibrosis"
Smith, Cheryl A. „Skeletal muscle injury, fibrosis and transforming growth factor-[beta]“. Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1744.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains xii, 146 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
van, Erp Christel. „Modifying function and fibrosis of cardiac and skeletal muscle from mdx mice“. University of Southern Queensland, Faculty of Sciences, 2005. http://eprints.usq.edu.au/archive/00001521/.
Der volle Inhalt der QuellePuliti, Elisa. „Role of sphingosine 1-phosphate metabolism and signalling in skeletal muscle atrophy and fibrosis“. Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1195603.
Der volle Inhalt der QuelleCai, Weisong, und 蔡蔚松. „Cystic fibrosis transmembrane conductance regulator is involved in therelease of ATP from contracting skeletal muscle“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49618088.
Der volle Inhalt der Quellepublished_or_final_version
Physiology
Master
Master of Philosophy
Lu, Lin, und 鹿琳. „The involvement of connexin hemichannels and cystic fibrosis transmembrane conductance regulator in acidosis-induced ATP release from skeletal myocytes“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208017.
Der volle Inhalt der Quellepublished_or_final_version
Physiology
Doctoral
Doctor of Philosophy
Pinto, Priscilla Avelino Ferreira. „Treino de baixa intensidade retarda a deposi??o de fibras col?genas no m?sculo gastrocn?mio distr?fico de modelo mdx“. UFVJM, 2017. http://acervo.ufvjm.edu.br/jspui/handle/1/1608.
Der volle Inhalt der QuelleApproved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2018-03-29T11:52:20Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) priscilla_avelino_ferreira_pinto.pdf: 1920663 bytes, checksum: c9bd6e512c60dc9f7254711669d80fe0 (MD5)
Made available in DSpace on 2018-03-29T11:52:21Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) priscilla_avelino_ferreira_pinto.pdf: 1920663 bytes, checksum: c9bd6e512c60dc9f7254711669d80fe0 (MD5) Previous issue date: 2017
Funda??o de Amparo ? Pesquisa do Estado de Minas Gerais (FAPEMIG)
Introdu??o: A Distrofia Muscular de Duchenne (DMD) ? marcada pela falta da distrofina, e sua aus?ncia leva a altera??es mec?nicas da fibra muscular, resultando num processo de necrose muscular e altera??es histol?gicas. O treinamento f?sico de baixa intensidade vem sendo empregado como forma de retardar a progress?o da DMD, entretanto, ainda n?o se sabe os par?metros ben?ficos ao m?sculo distr?fico. Assim, objetivou-se elucidar os efeitos do exerc?cio terap?utico de baixa intensidade em esteira no m?sculo esquel?tico distr?fico do modelo mdx nos par?metros morfol?gicos, na morfometria dos marcadores de les?o muscular, da fibrose musclar e na constitui??o da matriz extracelular pelos col?genos tipo I e III. Metodologia: Foram estudados tr?s grupos: camundongos mdx exerc?cio (mdxE), mdx sedent?rio (mdxC) e controle saud?veis (Cc) (n=8/grupo). O grupo mdxE foi estimulado a correr em esteira horizontal motorizada para ratos, em baixa intensidade, 9m/min por 30 minutos/dia, 3 vezes/semana, por 8 semanas. Ap?s o protocolo de exerc?cio foi realizada a eutan?sia dos animais e coletado o m?sculo gastrocn?mio. Foi realizada a colora??o Hematoxilina-Eosina para an?lise dos marcadores de les?o muscular: N?cleo Central e Di?metro M?nimo de Feret; a rea??o de Picrossirius red para an?lise das fibras col?genas na fibrose muscular e a imuno-localiza??o das fibras col?genas tipo I e III. Resultados: Foram observadas altera??es histol?gicas distr?ficas caracter?sticas nos grupos mdxE e mdxC e feixes de fibras col?genas espessas no grupo mdxC. A imuno-histoqu?mica revelou presen?a de col?geno do tipo I principalmente no grupo mdxC. N?o houve diferen?a significativa entre os grupos mdxE e mdxC para fibras com n?cleo central e coeficiente de varia??o do Di?metro m?nimo de Feret. O grupo mdxE n?o apresentou diferen?a significativa em rela??o ao Cc para a porcentagem da ?rea de fibras col?genas na fibrose muscular. Conclus?es: O treino de baixa intensidade reduz a deposi??o de fibras col?genas na fibrose muscular, com fibras delgadas do col?geno tipo I e n?o altera os marcadores de les?o muscular.
Disserta??o (Mestrado Profissional) ? Programa de P?s-Gradua??o em Reabilita??o e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2017.
Introduction: Duchenne muscular dystrophy (DMD) is marked by lack of dystrophin, and its absence leads to muscle fiber rupture, resulting in muscular necrosis and histological changes. Physical training of low intensity has been used to delay the progression of DMD, however, parameters of the dystrophic muscle are not yet known. The objective of this study was to elucidate the effects of a treadmill low intensity exercise on morphology, morphometric parameters of the muscle injury markers and the composition of the extracellular matrix by type I and III collagens of the dystrophic skeletal muscle of the mdx model. Methods: Three groups were studied: exercised mdx (mdxE), sedentary mdx (mdxC) and healthy controls (Cc) (n =8/group). The mdxE group was stimulated to run on a motorized horizontal treadmill for rats, with a low intensity (9 m/min for 30 minutes/day, 3 times/week) for 8 weeks. After the exercise protocol, the animals were euthanized and the gastrocnemius muscle was collected. Hematoxylin-Eosin staining was performed for analysis of muscle injury markers, Central Nucleus and Minimum Diameter of Feret, Picrossirius red reaction for analysis of collagen fibers in muscle fibrosis and immuno-localization of type I and III collagen fibers. Results: Dystrophic histopathological changes were observed in the mdxE and mdxC groups and thicker collagen fiber bundles in the mdxC group. Immunohistochemistry revealed the presence of type I collagen mainly in the mdxC group. There was no significant difference between the mdxE and mdxC groups for fibers with centrally located nuclei and coefficient of variation of the Minimum Feret Diameter. The mdxE group showed no significant difference in relation to Cc for the percentage of the area of collagen fibers in muscle fibrosis. Conclusions: The low intensity training reduced the deposition of collagen fibers in muscle fibrosis with thin fibers of type I collagen and did not alter the markers of muscle injury.
Hauck, James Spencer. „Mineralocorticoid Receptor Signaling in Acute and Chronic Muscle Injury“. The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1565089935933727.
Der volle Inhalt der QuelleNeves, Juliana de Carvalho. „Envolvimento da neuraminidase-1 na regeneração muscular“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/5/5138/tde-06052014-091743/.
Der volle Inhalt der QuelleNeuraminidase-1 (Neu1) participates in sialoglycoconjugates catabolism in lysosomes. Congenital Neu1 deficiency is the basis of sialidosis, a severe neurosomatic disorder associated with osteoskeletal deformities, hypotonia and muscle weakness. Mice with Neu1 deficiency (Neu1-/-) develop an atypical form of muscle degeneration characterized by abnormal fibroblast proliferation and expanded extracellular matrix (ECM), invasion of muscle fibers by fibroblast, cytosolic fragmentation, vacuolar formation and muscle atrophy. Despite muscle degeneration is well characterized in these animals, myogenesis has not been studied so far. The aim of this study was to evaluate the involvement of Neu1 in muscle regeneration process after cardiotoxin (CTX) injection in Neu1-/- mice and normal controls. CTX was applied in the right tibialis anterior muscle, and the animals were euthanized by cervical dislocation 1, 3, 5, 7, 10, 14, 21 and 28 days after injury. The muscles were analyzed through histology; cross-sectional area of regenerative muscle fibers; quantification of BrdU labeling; immunohistochemistry labelling for inflammation, regenerative fibers, and fibrosis; and gene and protein expression of muscle transcription factors. The data were compared and variances considered statistically significant in case p <= 0.05. In animals with Neu1 deficiency, both inflammatory process (mainly macrophagic response) and proliferative potential were increased in the initial stages, accompanied by overexpression of Pax7. We observed delay in muscle maturation characterized by higher expression of embryonic myosin later in muscle regeneration. MyoD and MyoG genes were overexpressed from 5 to 10 days after injury, though the expression of these proteins was reduced. At the end of muscle regeneration, reticulin deposition in ECM was increased, indicating fibrotic process. Neu1 seems to participate in all stages of muscle regeneration, since acute injury phase through the control of cell proliferation, towards muscle maturation, and at the final stages when it would regulate the deposition of ECM components
Ranasinghesagara, Janaka C. Yao Gang. „Optical reflectance in fibrous tissues and skeletal muscles“. Diss., Columbia, Mo. : University of Missouri--Columbia, 2008. http://hdl.handle.net/10355/6629.
Der volle Inhalt der QuelleHuber, Adrian Thomas. „Multi-organ non-invasive tissue characterization of fibrosis, adipose tissue, edema and inflammation with magnetic resonance (MR) imaging : applications to myocardium, skeletal muscle and liver interactions Cardiac MR strain: a noninvasive biomarker of fibro-fatty remodeling of the left atrial myocardium Comparison of MR T1 and T2 mapping parameters to characterize myocardial and skeletal muscle involvement in systemic Idiopathic Inflammatory Myopathy (IIM) Non-invasive differentiation of acute viral myocarditis and idiopathic inflammatory myopathy with cardiac involvement using magnetic resonance imaging T1 and T2 mapping CT predicts liver fibrosis: Prospective evaluation of morphology- and attenuationbased quantitative scores in routine portal venous abdominal scans“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS135.
Der volle Inhalt der QuelleThis thesis provides a proof of concept for MR atrial strain, as well as MR relaxometry in the myocardium, in skeletal muscles and in the liver. Thanks to a close interaction between radiologist and software engineers, two different softwares were developed, applied and validated: one for multiorgan T1 mapping in the myocardium, skeletal muscle and liver, another one for cardiac four-chamber strain analysis and volumetry. The first publication showed a strong correlation of LA strain with the degree of fibro-fatty replacement in histology. Such functional imaging biomarker in combination with LA volumetry could help to guide clinical decisions, since myocardial structural remodeling is a known morphologic substrate of LA dysfunction, atrial fibrillation and adverse outcome. In the second publication, MR relaxometry parameters applied to the myocardium and skeletal muscles in IIM patients and healthy volunteers were used as a model to demonstrate influences of different tissue composition and vascularization on T1 mapping parameters. ΔT1 and EHF were introduced as simple alternatives to ECV in highly vascularized tissues such as the myocardium. In the third publication, MR relaxometry parameters applied to the skeletal muscls allowed for an accurate discrimination of AVM and IIM with cardiac involvement. However, when applied to the myocardium, parametric mapping did not separate between the two groups. The fourth publication introduced native T1 of the liver an easily accessible and accurate non-invasive imaging associate of congestive HF in IDCM patients with better performance than established functional parameters such as LV volumes, ejection fraction or strain
Buchteile zum Thema "Skeletal muscle fibrosis"
Pessina, Patrizia, und Pura Muñoz-Cánoves. „Fibrosis-Inducing Strategies in Regenerating Dystrophic and Normal Skeletal Muscle“. In Methods in Molecular Biology, 73–82. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3810-0_7.
Der volle Inhalt der QuelleElhussieny, Ahmed, Ken’ichiro Nogami, Fusako Sakai-Takemura, Yusuke Maruyama, AbdElraouf Omar Abdelbakey, Wael Abou El-kheir, Shin’ichi Takeda und Yuko Miyagoe-Suzuki. „Mesenchymal Stem Cells for Regenerative Medicine for Duchenne Muscular Dystrophy“. In Muscular Dystrophy - Research Updates and Therapeutic Strategies. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92824.
Der volle Inhalt der QuelleLambrechts, Mark. „Musculoskeletal Abnormalities Caused by Cystic Fibrosis“. In Advances in Skeletal Muscle Health and Disease [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104591.
Der volle Inhalt der QuelleLambrechts, Mark. „Musculoskeletal Abnormalities Caused by Cystic Fibrosis“. In Advances in Skeletal Muscle Health and Disease [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104591.
Der volle Inhalt der QuelleSerrano, Antonio L., Christopher J. Mann, Berta Vidal, Esther Ardite, Eusebio Perdiguero und Pura Muñoz-Cánoves. „Cellular and Molecular Mechanisms Regulating Fibrosis in Skeletal Muscle Repair and Disease“. In Current Topics in Developmental Biology, 167–201. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-12-385940-2.00007-3.
Der volle Inhalt der QuelleBundgaard, Henning, Anna Axelsson, Alex Christensen und Helle Petri. „The heart in neuromuscular disease: myotonic dystrophy“. In ESC CardioMed, 1530–34. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0370.
Der volle Inhalt der QuelleAtkinson, Martin E. „Introduction and surface anatomy“. In Anatomy for Dental Students. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199234462.003.0029.
Der volle Inhalt der QuelleShpadaruk, Volha, und Karen E. Harman. „Cutaneous vasculitis, connective tissue diseases, and urticaria“. In Oxford Textbook of Medicine, herausgegeben von Roderick J. Hay, 5639–76. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0556.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Skeletal muscle fibrosis"
Rozenberg, D., M. Sussman, R. G. L. Koh, S. Nourouzpour, L. Wickerson, L. G. Singer, S. Shapera et al. „Skeletal Muscle Size and Fat Infiltration of the Limb Muscles in Idiopathic Pulmonary Fibrosis“. In American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a3179.
Der volle Inhalt der QuelleBalañá, Ana, Juana Martínez-Llorens, Diego Agustin Rodríguez, Mireia Admetlló, Anna Salazar, Pilar Ausin, Esther Barreiro und Joaquin Gea. „Skeletal muscle function and structure in patients with non-cystic fibrosis bronchiectasis“. In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.oa265.
Der volle Inhalt der QuelleVerges, Samuel, Nicolas Decorte, Mathieu Gruet, Boubou Camara, Sébastien Quetant, Laurent Mely, Jean-Marc Vallier und Bernard Wuyam. „Skeletal muscle metabolism in active cystic fibrosis (CF) patients with light/moderate pulmonary dysfunction“. In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.pa2242.
Der volle Inhalt der QuelleWang, Xuejie, Ana Balañá Corberó, Juana Martínez Llorens, Liyun Qin, Mireia Admetlló, Esmeralda Hernández Leal, Xavier Duran, Antonio Sancho Muñoz und Esther Barreiro Portela. „Skeletal Muscle Dysfunction and Body Composition Alterations in Non-Cystic Fibrosis Bronchiectasis Patients: Gender Differences“. In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.1836.
Der volle Inhalt der QuelleHuang, Alice H., Spencer S. Watson und Ronen Schweitzer. „Lineage Tracing Reveals a New Model for Tendon Growth and Elongation During Development“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80915.
Der volle Inhalt der QuelleUslu, Nazlı Zeynep, Derya Kocakaya, Sehnaz Olgun Yıldızeli, Emel Eryüksel, Özge Keniş Coşkun, Canan Cimşit, Şeyma Görçin Karaketir und Berrin Ceyhan. „Does cystic fibrosis impact skeletal muscles and diaphragm function?“ In ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.pa343.
Der volle Inhalt der QuelleMarillier, Mathieu, Anne-Catherine Bernard, Onofre Moran-Mendoza, Denis E. O'Donnell, Samuel Verges und J. Alberto Neder. „Beyond the lungs in fibrotic interstitial lung disease: does supplemental O2 improve skeletal muscle oxygenation and fatigue?“ In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.4405.
Der volle Inhalt der Quelle