Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Smart antenna“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Smart antenna" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Smart antenna"
Chougule, Rutuja. „Smart Antenna Systems“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 6 (30.06.2022): 1182–86. http://dx.doi.org/10.22214/ijraset.2022.43988.
Der volle Inhalt der QuelleBansal, Preeti, und Nidhi Chahal. „Smart Antennas for Various Applications“. CGC International Journal of Contemporary Technology and Research 4, Nr. 2 (05.08.2022): 316–18. http://dx.doi.org/10.46860/cgcijctr.2022.07.31.316.
Der volle Inhalt der QuelleM. Africa, Aaron Don, Rica Rizabel M. Tagabuhin und Jan Jayson S. D. Tirados. „Design and simulation of an adaptive beam smart antenna using MATLAB“. Indonesian Journal of Electrical Engineering and Computer Science 21, Nr. 3 (10.03.2021): 1584. http://dx.doi.org/10.11591/ijeecs.v21.i3.pp1584-1593.
Der volle Inhalt der QuelleMondal, Japatosh, Sobuj Kumar Ray, Md Shah Alam und Md Mezanur Rahman. „Design Smart Antenna by Microstrip Patch Antenna Array“. International Journal of Engineering and Technology 3, Nr. 6 (2011): 675–83. http://dx.doi.org/10.7763/ijet.2011.v3.304.
Der volle Inhalt der QuelleYang, Lingsheng, Peijie Wang, Biyu Cheng und Jianping Fang. „Design of Hybrid Antenna System for User Terminal Applications“. Frequenz 72, Nr. 9-10 (28.08.2018): 407–14. http://dx.doi.org/10.1515/freq-2017-0197.
Der volle Inhalt der QuelleChin, Kuo-Sheng, Chi-Sheng Wu, Chien-Lung Shen und Kun-Chuan Tsai. „Designs of Textile Antenna Arrays for Smart Clothing Applications“. Autex Research Journal 18, Nr. 3 (01.09.2018): 295–307. http://dx.doi.org/10.1515/aut-2018-0002.
Der volle Inhalt der QuelleT. G., Shivapanchakshari, und H. S. Aravinda. „PSO-CCO_MIMO-SA: A particle swarm optimization based channel capacity optimzation for MIMO system incorporated with smart antenna“. International Journal of Electrical and Computer Engineering (IJECE) 10, Nr. 6 (01.12.2020): 6276. http://dx.doi.org/10.11591/ijece.v10i6.pp6276-6282.
Der volle Inhalt der QuelleC. Anand. „Review of Smart Antenna Approaches in Wireless Systems“. December 2022 4, Nr. 4 (03.01.2023): 253–62. http://dx.doi.org/10.36548/jsws.2022.4.004.
Der volle Inhalt der QuelleZhang, Zufan, Jie Zhang und Shaohui Sun. „Model of Handover and Traffic Based on Cellular Geometry with Smart Antenna“. International Journal of Antennas and Propagation 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/646053.
Der volle Inhalt der QuelleLevy, Mounissamy, Sumanta Bose, D. Sriram Kumar und Anh Van Dinh. „Rapid Beam Forming in Smart Antennas Using Smart-Fractal Concepts Employing Combinational Approach Algorithms“. International Journal of Antennas and Propagation 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/467492.
Der volle Inhalt der QuelleDissertationen zum Thema "Smart antenna"
Ryken, Marv. „C-Band TM Smart Antenna“. International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581445.
Der volle Inhalt der QuelleThis paper addresses the system requirements of the C-Band TM antenna that will take the place of the S-Band TM antenna used in applications on munitions and targets that require a quasi-omni directional antenna pattern. For these applications, the C-Band TM effective radiated power (ERP) must be approximately 3 dB higher than the S-Band TM ERP to achieve the same system performance due mainly to weather and environmental differences. From a systems stand-point, this will be a problem for the following reasons: power amplification at higher frequencies is usually less efficient, there is a limit on prime power due to battery capabilities, and a more complex corporate feed at C-Band as compared to S-Band will produce more loss. This means that a more fruitful approach would be to use smart antenna ideas to achieve the required higher ERP as compared to current approaches of using higher power transistors and more battery power. Several smart antenna ideas are introduced in this paper, switchable driven element antenna is described including active amplification at each element.
Hwang, Seung-Hyeon. „Adaptive antenna techniques for smart antennas and radar systems“. Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2005. http://wwwlib.umi.com/cr/syr/main.
Der volle Inhalt der QuelleReis, Helder Vasconcelos Graça. „Smart antenna for RFID applications“. Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14541.
Der volle Inhalt der QuelleThe adoption and proliferation of information systems in many business and personal activities leads to the need of tagging and tracking items and services. Radio frequency identi cation (RFID) systems were developed as an e ort to answer the increasing needs of particulars and enterprises alike for wireless identi cation of objects and data exchange services, enabling a large number of businesses to reduce costs and increase revenue. As to further develop the e ciency provided by businesses worldwide, smart antenna systems were introduced as core component in their production and service providing lines, opening the path for innovative and robust wireless RFID based communication schemes, providing advanced signal capturing, processing characteristics and enhanced tracking and process automation. Smart antennas can be installed within RFID readers, enabling them to more e ciently process returned echoes by the tags and therefore improving the identi cation mechanism. RFID reader architectures with an embedded smart antenna network reliably improve the throughput, the reading speed and position detection of tagged items. A smart antenna based circuit is proposed here for RFID assisted localization and for beam steering applications using a uniform linear array of microstrip directional antennas. Several beamforming and direction of arrival estimation methods were employed in order to analyze their performance and resolution based on the computational load, modulation, and the overall environment in which the smart anetnna system may be deployed.
A adoção e proliferação de sistemas de informação em várias indústrias e atividades pessoais são responsáveis pela crescente necessidade de identifcar e rastrear itens e serviços. Sistemas de identificação por rádiofrequência (RFID) foram desenvolvidos de modo a responder às crescentes necessidades tanto de particulares como de empresas quanto à utilização de sistemas de identificaçao e de transmissão de dados sem _os, permitindo a redução de despesas e o aumento de receitas a várias empresas. De modo a melhorar a eficiência de empresas a uma escala global, sistemas de antenas inteligentes foram introduzidos nas suas linhas de manufatura e de prestação de serviços como um componente central, abrirando o caminho para esquemas de comunicação sem _os inovadores e robustos, baseados em RFID, facultando processos de captura e processamento de sinal avançados capazes de fornecer melhorias em aplicações de rastreamento e automação de processos. Antenas inteligentes podem ser instaladas em leitores RFID, permitindo um melhor processamento de sinais transmitidos pelas etiquetas, dando origem a um método de identificação mais eficiente. A arquitectura de leitores RFID com uma rede de antenas inteligentes embutida garante melhorias na taxa de transferência e na rapidez de leitura de informação assim como na deteção de itens etiquetados. Um circuito baseado em sistemas de antenas inteligentes é proposto neste trabalho para localização assistida dispositivos RFID e para direccionamento de feixe através da utilizaçao de um agregado linear e uniforme de antenas microstrip diretivas. Várias técnicas de direcionamento de feixe e de estimativa de angulo de chegada foram utilizados, de modo a analisar o desempenho e a resolução de cada algoritmo de acordo com a carga computacional, modulação utilizada e o ambiente em que o sistema de antenas inteligentes poderá ser implementado.
Zarei, Hossein. „RF variable phase shifters for multiple smart antenna transceivers /“. Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5964.
Der volle Inhalt der QuelleTidd, William Graves. „Sequential beamspace smart antenna system“. Thesis, Montana State University, 2011. http://etd.lib.montana.edu/etd/2011/tidd/TiddW0511.pdf.
Der volle Inhalt der QuellePalantei, Elyas. „Switched Parasitic Smart Antenna: Design and Implementation for Wireless Communication Systems“. Thesis, Griffith University, 2012. http://hdl.handle.net/10072/366219.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Tung, Edwin Tai-Wing. „A multiport antenna for an indoor PCS smart antenna system“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ38646.pdf.
Der volle Inhalt der QuellePal, Jitendra. „RF MEMS Switches for Smart Antenna“. Thesis, Griffith University, 2016. http://hdl.handle.net/10072/368172.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Elfarawi, Shaaban M. „Indoor CDMA capacity using smart antenna base station“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0019/MQ54885.pdf.
Der volle Inhalt der QuelleKarnaushenko, Dmitriy D. „Compact Helical Antenna for Smart Implant Applications“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-230942.
Der volle Inhalt der QuelleBücher zum Thema "Smart antenna"
Matin, Mohammad Abdul, Hrsg. Wideband, Multiband, and Smart Antenna Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74311-6.
Der volle Inhalt der QuelleOkamoto, Garret T. Smart Antenna Systems and Wireless LANs. Cleveland: Kluwer Academic Publishers, 2002.
Den vollen Inhalt der Quelle findenSmart antenna systems and wireless lans. Boston: Kluwer Academic Publishers, 1999.
Den vollen Inhalt der Quelle findenEllinger, Frank. Monolithic integrated circuits for smart antenna receivers at C-band. Konstanz: Hartung-Gorre, 2001.
Den vollen Inhalt der Quelle finden1977-, Sun Chen, Cheng Jun 1964- und Ohira Takashi 1955-, Hrsg. Handbook on advancements in smart antenna technologies for wireless networks. Hershey, PA: Information Science Reference, 2008.
Den vollen Inhalt der Quelle findenCambridge, England) IEEE International Workshop on Antenna Technology (2007. 2007 International Workshop on Antenna Technology: Small and smart antennas, metamaterials and applications : iWAT 2007, S²AMA : conference proceedings : Cambridge, UK, March 21-23, 2007. Piscataway, NJ: IEEE, 2007.
Den vollen Inhalt der Quelle findenMalik, Praveen Kumar, Joan Lu, B. T. P. Madhav, Geeta Kalkhambkar und Swetha Amit, Hrsg. Smart Antennas. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8.
Der volle Inhalt der QuelleSarkar, Tapan K., Michael C. Wicks, Magdalena Salazar-Palma und Robert J. Bonneau. Smart Antennas. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471722839.
Der volle Inhalt der QuelleTapan, Sarkar, Hrsg. Smart antennas. Hoboken, N.J: IEEE Press, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Smart antenna"
Ohira, Takashi, und Jun Cheng. „Analog Smart Antennas“. In Adaptive Antenna Arrays, 184–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05592-2_11.
Der volle Inhalt der QuelleYaduvanshi, Rajveer S., und Gaurav Varshney. „Vehicular Smart Antenna“. In Nano Dielectric Resonator Antennas for 5G Applications, 215–32. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029342-12.
Der volle Inhalt der QuelleLeong, Stetson Oh Kok, Ng Kim Chong, P. R. P. Hoole und E. Gunawan. „Smart Antennas: Mobile Station Antenna Location“. In Smart Antennas and Electromagnetic Signal Processing in Advanced Wireless Technology, 195–216. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339564-7.
Der volle Inhalt der QuelleTiwari, Archana, und A. A. Khurshid. „Antenna Optimization Using Taguchi’s Method“. In Smart Antennas, 69–84. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_7.
Der volle Inhalt der QuelleKumar, Amit, Mahesh Kumar Agwariya und Vimlesh Singh. „Applications of Microstrip Antenna in IoT“. In Smart Antennas, 259–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_20.
Der volle Inhalt der QuelleMujawar, Mehaboob, und T. Gunasekaran. „Multiband Slot Microstrip Antenna for Wireless Applications“. In Smart Antennas, 23–34. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_3.
Der volle Inhalt der QuellePotey, Pranita Manish, Kushal Tuckley und Anjali Thakare. „Slot-Based Miniaturized Textile Antenna for Wearable Application“. In Smart Antennas, 315–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_24.
Der volle Inhalt der QuelleDas, Hirendra, Mridusmita Sharma und Qiang Xu. „Microstrip Antenna: An Overview and Its Performance Parameter“. In Smart Antennas, 3–14. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_1.
Der volle Inhalt der QuelleCaroline, B. Elizabeth, B. Neeththi Aadithiya, J. Jeyarani und Abdul Rahim Sadiq Batcha. „Planar Multiband Smart Antenna for Wireless Communication Applications“. In Smart Antennas, 285–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_22.
Der volle Inhalt der QuelleGaitonde, Jaya V., und Rajesh B. Lohani. „Configurable OPFET-Based Photodetector for 5G Smart Antenna Applications“. In Smart Antennas, 359–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_27.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Smart antenna"
Sulic, E., B. Pell, S. John, Rahul K. Gupta, W. Rowe, K. Ghorbani und K. Zhang. „Performance of Embedded Multi-Frequency Communication Devices in Smart Composite Structures“. In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-402.
Der volle Inhalt der QuelleYi, Xiaohua, Chunhee Cho, Yang Wang, Benjamin S. Cook, James Cooper, Rushi Vyas, Manos M. Tentzeris und Roberto T. Leon. „Passive Frequency Doubling Antenna Sensor for Wireless Strain Sensing“. In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7923.
Der volle Inhalt der QuelleDaliri, Ali, Chun H. Wang, Sabu John, Amir Galehdar, Wayne S. T. Rowe und Kamran Ghorbani. „Multidirectional Circular Microstrip Patch Antenna Strain Sensor“. In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5065.
Der volle Inhalt der QuelleDaliri, Ali, Chun H. Wang, Sabu John, Amir Galehdar, Wayne S. T. Rowe, Kamran Ghorbani und Paul J. Callus. „FEA Evaluation of the Mechanical and Electromagnetic Performance of Slot Log-Spiral Antennas in Conformal Load-Bearing Antenna Structure (CLAS)“. In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5137.
Der volle Inhalt der QuelleDaliri, Ali, Sabu John, Chun H. Wang, Amir Galehdar, Wayne S. T. Rowe, Kamran Ghorbani und Paul J. Callus. „Effect of Filler Materials on the Performance of Conformal Load-Bearing Spiral Antennas“. In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7955.
Der volle Inhalt der Quelle„Antenna arrays, adaptive and smart antennas“. In 2015 International Conference on Antenna Theory and Techniques (ICATT). IEEE, 2015. http://dx.doi.org/10.1109/icatt.2015.7136813.
Der volle Inhalt der QuelleDaliri, Ali, Sabu John, Amir Galehdar, Wayne S. T. Rowe und Kamran Ghorbani. „Strain Measurement in Composite Materials Using Microstrip Patch Antennas“. In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3703.
Der volle Inhalt der QuelleZhou, Li, und Chuanhua Wen. „Smart antenna system“. In Asia Pacific Optical Communications, herausgegeben von Ken-ichi Kitayama, Pierpaolo C. Ghiggino, Kim Roberts und Yikai Su. SPIE, 2008. http://dx.doi.org/10.1117/12.804206.
Der volle Inhalt der QuelleDaliri, Ali, Sabu John, Chun H. Wang, Amir Galehdar, Wayne S. T. Rowe und Kamran Ghorbani. „Wireless Strain Sensors Using Electromagnetic Resonators“. In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7954.
Der volle Inhalt der QuelleSaleeb, A. A. „Smart antenna techniques applied to UWB array antennas“. In IET Seminar on Ultra Wideband Systems, Technologies and Applications. IEE, 2006. http://dx.doi.org/10.1049/ic:20060517.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Smart antenna"
Esener, Sadik. Optical Interconnects for Smart Antenna Driver-Receiver-Switch System for Wireless Communication. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2002. http://dx.doi.org/10.21236/ada412178.
Der volle Inhalt der QuelleKang, Intae, und Radha Poovendran. Design Issues on Broadcast Routing Algorithms using Realistic Cost-Effective Smart Antenna Models. Fort Belvoir, VA: Defense Technical Information Center, Januar 2004. http://dx.doi.org/10.21236/ada459825.
Der volle Inhalt der QuellePaulraj, Arogyaswami. Smart Antennas for Battlefield Multimedia Wireless Networks with Dual Use Applications. Fort Belvoir, VA: Defense Technical Information Center, August 1998. http://dx.doi.org/10.21236/ada357870.
Der volle Inhalt der Quelle