Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Soil-pile interaction in liquefiable“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Soil-pile interaction in liquefiable" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Soil-pile interaction in liquefiable"
Klar, Assaf, Rafael Baker und Sam Frydman. „Seismic soil–pile interaction in liquefiable soil“. Soil Dynamics and Earthquake Engineering 24, Nr. 8 (September 2004): 551–64. http://dx.doi.org/10.1016/j.soildyn.2003.10.006.
Der volle Inhalt der QuelleGowda, G. M. Basavana, S. V. Dinesh, L. Govindaraju und R. Ramesh Babu. „Effect of Liquefaction Induced Lateral Spreading on Seismic Performance of Pile Foundations“. Civil Engineering Journal 7 (12.03.2022): 58–70. http://dx.doi.org/10.28991/cej-sp2021-07-05.
Der volle Inhalt der QuelleBoulanger, Ross W., Daniel W. Wilson, Bruce L. Kutter und Abbas Abghari. „Soil-Pile-Superstructure Interaction in Liquefiable Sand“. Transportation Research Record: Journal of the Transportation Research Board 1569, Nr. 1 (Januar 1997): 55–64. http://dx.doi.org/10.3141/1569-07.
Der volle Inhalt der QuelleZhang, Xinlei, Zhanpeng Ji, Hongmei Gao, Zhihua Wang und Wenwen Li. „Pseudo-Static Simplified Analysis Method of the Pile-Liquefiable Soil Interaction considering Rate-Dependent Characteristics“. Shock and Vibration 2022 (09.05.2022): 1–14. http://dx.doi.org/10.1155/2022/5915356.
Der volle Inhalt der QuelleYang, Zhao Hui, Xiao Yu Zhang und Run Lin Yang. „Shake Table Modeling of Laterally Loaded Piles in Liquefiable Soils with a Frozen Crust“. Applied Mechanics and Materials 204-208 (Oktober 2012): 654–58. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.654.
Der volle Inhalt der QuelleLi, Pei Zhen, Da Ming Zeng, Sheng Long Cui und Xi Lin Lu. „Parameter Identification and Numerical Analysis of Shaking Table Tests on Liquefiable Soil-Structure-Interaction“. Advanced Materials Research 163-167 (Dezember 2010): 4048–57. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.4048.
Der volle Inhalt der QuelleZhang, Xinlei, Zhanpeng Ji, Jun Guo, Hongmei Gao und Zhihua Wang. „Seismic Pile–Soil Interaction Analysis Based on a Unified Thixotropic Fluid Model in Liquefiable Soil“. Sustainability 15, Nr. 6 (17.03.2023): 5345. http://dx.doi.org/10.3390/su15065345.
Der volle Inhalt der QuelleHaigh, Stuart K., und S. P. Gopal Madabhushi. „Centrifuge modelling of pile-soil interaction in liquefiable slopes“. Geomechanics and Engineering 3, Nr. 1 (25.03.2011): 1–16. http://dx.doi.org/10.12989/gae.2011.3.1.001.
Der volle Inhalt der QuelleChang, Dongdong, Ross Boulanger, Scott Brandenberg und Bruce Kutter. „FEM Analysis of Dynamic Soil-Pile-Structure Interaction in Liquefied and Laterally Spreading Ground“. Earthquake Spectra 29, Nr. 3 (August 2013): 733–55. http://dx.doi.org/10.1193/1.4000156.
Der volle Inhalt der QuelleTian, Li Hui, Guo Feng Bai, Bin Feng, Li Yuan Wang und De Zhi Yang. „Scientific Problems on Seismic Resistance of Bridge of Pile Foundation in Liquefiable Site“. Advanced Materials Research 594-597 (November 2012): 1707–12. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.1707.
Der volle Inhalt der QuelleDissertationen zum Thema "Soil-pile interaction in liquefiable"
Dash, Suresh R. „Lateral pile soil interaction in liquefiable soils“. Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543468.
Der volle Inhalt der QuelleTang, Xiaowei. „Nonlinear Numerical Methods to Analyze Ground Flow and Soil-Pile Interaction in Liquefiable Soil“. 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/134545.
Der volle Inhalt der QuelleVarun. „A non-linear dynamic macroelement for soil structure interaction analyses of piles in liquefiable sites“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34718.
Der volle Inhalt der QuelleChian, Siau Chen. „Floatation of underground structures in liquefiable soils“. Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610082.
Der volle Inhalt der QuelleChaudhry, Anjum Rashid. „Static pile-soil-pile interaction in offshore pile groups“. Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:7b4c8d56-184f-4c8d-98c9-2d9c69a1ef55.
Der volle Inhalt der QuelleTaherzadeh, Reza. „Seismic soil-pile group-structure interaction“. Châtenay-Malabry, Ecole centrale de Paris, 2008. http://www.theses.fr/2008ECAP1096.
Der volle Inhalt der QuelleDespite the significant progress in simple engineering design of surface footing with considering the soil-structure interaction (SSI), there is still a need of the same procedure for the pile group foundation. The main approach to solve this strongly coupled problem is the use of full numerical models, taking into account the soil and the piles with equal rigor. This is however a computationally very demanding approach, in particular for large numbers of piles. The originality of this thesis is using an advanced numerical method with coupling the existing software MISS3D based on boundary element (BE), green's function for the stratified infinite visco-elastic soil and the matlab toolbox SDT based on finite element (FE) method to modeling the foundation and the superstructure. After the validation of this numerical approach with the other numerical results published in the literature, the leading parameters affecting the impedance and the kinematic interaction have been identified. Simple formulations have then been derived for the dynamic stiffness matrices of pile groups foundation subjected to horizontal and rocking dynamic loads for both floating piles in homogeneous half-space and end-bearing piles. These formulations were found using a large data base of impedance matrix computed by numerical FE-BE model. These simple approaches have been validated in a practical case. A modified spectral response is then proposed with considering the soil-structure interaction effect
Dewsbury, Jonathan J. „Numerical modelling of soil-pile-structure interaction“. Thesis, University of Southampton, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582152.
Der volle Inhalt der QuellePeiris, Thanuja Pubudini. „Soil-pile interaction of pile embedded in deep layered marine sediment under seismic excitation“. Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/75518/1/Thanuja%20Pubudini_Peiris_Thesis.pdf.
Der volle Inhalt der QuelleTOMBARI, ALESSANDRO. „Seismic response of extended pile shafts considering nonlinear soil-pile interaction“. Doctoral thesis, Università Politecnica delle Marche, 2013. http://hdl.handle.net/11566/242686.
Der volle Inhalt der QuelleSingle column bents on extended pile shafts are widely used in bridges for their economical and technical advantages. Nevertheless, this system is strongly affected by Dynamic Soil- Pile-Structure Interaction. In addition to the lengthening of the fundamental period of the structure, the compliance of the foundation induces a rocking component of the seismic motion experienced by the overall system that cannot be considered by following the procedures of a common seismic design practice. Although advanced models have been developed in order to account for Soil-Pile-Structure Interaction both in the linear and nonlinear range, Winkler-type models represent one of the most feasible approaches. In this work, a Beam on Nonlinear Winkler Foundation model is used to investigate the importance of features typical in soil nonlinear behaviour such as yielding, gapping, soil cave-in and cyclic hardening/degradation effects on the performance of extended pile shafts. A procedure to estimate the model parameters from geotechnical soil characterization is presented. Incremental Dynamic Analyses are performed to evaluate the effects of Ground Motion Duration and soil nonlinearity on the performance of extended pile shafts in various homogeneous and two-layered soil profiles, including saturated clay and sand in either fully dry or saturated state with different levels of compaction. A procedure to perform Incremental Dynamic Analysis, including effects on both site response analysis and on the structural performance, is established. Nonlinear kinematic and inertial interaction effects are analyzed by means of an exhaustive parametric investigation. The significant effects of the rocking component and the Ground Motion Duration on the seismic response of extended pile shafts are demonstrated. Comparisons with results obtained with a linear model are also presented. Finally, some considerations are drawn pointing out grey areas of the common design practice.
Fernandez, Carlos Javier. „Pile-structure interaction in GTSTRUDL“. Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/21418.
Der volle Inhalt der QuelleBücher zum Thema "Soil-pile interaction in liquefiable"
Jonathan, Knappett, und Haigh Stuart, Hrsg. Design of pile foundations in liquefiable soils. London: Imperial College Press, 2010.
Den vollen Inhalt der Quelle findenPedro, Arduino, University of Washington. Dept. of Civil Engineering., Washington State Transportation Center, Washington (State). Dept. of Transportation., United States. Federal Highway Administration. und Washington State Transportation Commission, Hrsg. Dynamic stiffness of piles in liquefiable soils. Seattle, Wash: The Center, 2002.
Den vollen Inhalt der Quelle findenLee, Lin. Soil-pile interaction of bored and cast in-situ piles. Birmingham: University of Birmingham, 2001.
Den vollen Inhalt der Quelle findenF, Van Impe W., Hrsg. Single piles and pile groups under lateral loading. Rotterdam: Balkema, 2001.
Den vollen Inhalt der Quelle findenW, Boulanger Ross, Tokimatsu Kohji, University of California, Berkeley. Earthquake Engineering Research Center., American Society of Civil Engineers. Geo-Institute. und Tōkyō Kōgyō Daigaku. Toshi Jishin Kōgaku Sentā., Hrsg. Seismic performance and simulation of pile foundations in liquefield and laterally spreading ground: Proceedings of a workshop, March 16-18, 2005, University of California, Davis, California. Reston, VA: American Society of Civil Engineers, 2005.
Den vollen Inhalt der Quelle findenModak, Sukomal. Determination of rheological parameters of pile foundations for bridges for earthquake analysis. [Olympia]: Washington State Dept. of Transportation, 1997.
Den vollen Inhalt der Quelle findenCofer, William F. Determination of rheological parameters of pile foundations for bridges for earthquake analysis. [Olympia]: Washington State Dept. of Transportation, 1997.
Den vollen Inhalt der Quelle findenWoods, Richard D. Dynamic effects of pile installations on adjacent structures. Washington, D.C: National Academy Press, 1997.
Den vollen Inhalt der Quelle findenShamsher, Prakash, American Society of Civil Engineers. Committee on Geotechnical Earthquake Engineering. und ASCE National Convention (1997 : Minneapolis, Minn.), Hrsg. Seismic analysis and design for soil-pile-structure interactions: Proceedings of a session sponsored by the Committee on Geotechnical Earthquake Engineering of the Geo-Institute of the American Society of Civil Engineers in conjunction with the ASCE National Convention in Minneapolis, Minnesota, October 5-8, 1997. Reston, VA: The Society, 1997.
Den vollen Inhalt der Quelle findenReese, L. C., und William F. van Impe. Single piles and pile groups under lateral loading (HBK). Taylor & Francis, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Soil-pile interaction in liquefiable"
Alver, Ozan, und E. Ece Eseller-Bayat. „The Effect of Soil Damping on the Soil-Pile-Structure Interaction Analyses in Liquefiable and Non-liquefiable Soils“. In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 1059–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_83.
Der volle Inhalt der QuelleQi, Shengwenjun, und Jonathan Adam Knappett. „Remediation of Structure-Soil-Structure Interaction on Liquefiable Soil Using Densification“. In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 1193–200. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_99.
Der volle Inhalt der QuelleMiranda, G., V. Nappa, E. Bilotta, S. K. Haigh und S. P. G. Madabhushi. „Centrifuge tests on tunnel-building interaction in liquefiable soil“. In Geotechnical Aspects of Underground Construction in Soft Ground. 2nd Edition, 613–19. 2. Aufl. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003355595-80.
Der volle Inhalt der QuelleAzadi, Mohammad, und Lindsey Sebastian Bryson. „Effect of Width Variation of Liquefiable Sand Lens on Surface Settlement Due to Shallow Tunneling“. In Dynamic Soil-Structure Interaction for Sustainable Infrastructures, 155–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01920-4_13.
Der volle Inhalt der QuelleFansuri, Muhammad Hamzah, Muhsiung Chang und Rini Kusumawardani. „A Case Study on Buckling Stability of Piles in Liquefiable Ground for a Coal-Fired Power Station in Indonesia“. In Innovative Solutions for Soil Structure Interaction, 88–106. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34252-4_8.
Der volle Inhalt der QuelleMiranda, G., V. Nappa und E. Bilotta. „Preliminary Numerical Simulation of Centrifuge Tests on Tunnel-Building Interaction in Liquefiable Soil“. In Lecture Notes in Civil Engineering, 583–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21359-6_62.
Der volle Inhalt der QuelleKhodakarami, Mohammad Iman, Marzieh Dehghan und Denise-Penelope N. Kontoni. „Modeling of Soil-Structure Interaction in Liquefiable Soils Using an Equivalent Linear Approach Including Shear Modulus Updating“. In Lecture Notes in Civil Engineering, 389–406. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4055-2_31.
Der volle Inhalt der QuelleArulmoli, Arul K. „Preliminary Seismic Deformation and Soil-Structure Interaction Evaluations of a Caisson-Supported Marine Terminal Wharf Retaining and Founded on Liquefiable Soils“. In Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading, 631–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22818-7_32.
Der volle Inhalt der QuelleRehman, Musabur, und S. M. Abbas. „Seismic Analysis of Pile Foundation Passing Through Liquefiable Soil“. In Lecture Notes in Civil Engineering, 539–53. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2545-2_45.
Der volle Inhalt der QuelleNovak, M. „Pile-Soil-Pile Interaction under Small and Large Displacements“. In Developments in Dynamic Soil-Structure Interaction, 361–80. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1755-5_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Soil-pile interaction in liquefiable"
Ghasemi, Golara, Amin Barari und Asskar Janalizadeh Choobbasti. „Seismic Analysis of Pile-Soil Interaction in Liquefiable Soils via Gap Elements“. In Geo-Shanghai 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413425.033.
Der volle Inhalt der QuelleShafieezadeh, A., B. D. Kosbab, R. DesRoches und R. T. Leon. „Dynamic Interaction Behavior of Pile-Supported Wharves and Container Cranes in Liquefiable Soil Embankments“. In Structures Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412367.049.
Der volle Inhalt der QuelleTang, Liang, Xianzhang Ling, Pengju Xu, Xia Gao und Liquan Wu. „Case Studies for Shaking Table Tests on Seismic Soil-Pile Group-Bridge Structure Interaction in Liquefiable Ground“. In Ninth International Conference of Chinese Transportation Professionals (ICCTP). Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41064(358)131.
Der volle Inhalt der QuelleChaloulos, Yannis, Yannis Tsiapas, George Bouckovalas und Konstantinos Bazaios. „COUPLED ANALYSIS OF SEISMIC PILE-TENDON-PLATFORM INTERACTION IN LIQUEFIABLE SEABED“. In 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research National Technical University of Athens, 2021. http://dx.doi.org/10.7712/120121.8843.18540.
Der volle Inhalt der QuelleLing, X. Z., X. Gao, L. Tang und L. Su. „Effect of Shaking Intensity on Interactive Behavior of Soil-Pile Group Foundations in Liquefiable Soil during Shaking Table Tests“. In Sixth China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413234.079.
Der volle Inhalt der QuelleTajirian, Frederick F., Mansour Tabatabaie und Pramod Rao. „Soil-Structure Interaction Analysis of a Large Diameter Tank on Piled Foundations in Liquefiable Soil“. In Eighth International Conference on Case Histories in Geotechnical Engineering. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482100.018.
Der volle Inhalt der QuelleRayamajhi, Deepak, Dario Rosidi, Michele McHenry und Nathan M. Wallace. „Assessment of Soil-Structure-Fluid Interaction of a Digester Tank Complex in Liquefiable Soils under Earthquake Loadings“. In Geotechnical Earthquake Engineering and Soil Dynamics V. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481479.006.
Der volle Inhalt der QuelleTang, Xiaowei, Ying Jie und Maotian Luan. „A Coupled Finite Element-Element Free Galerkin Method for Liquefiable Soil-Structure Interaction Analysis Under Earthquake Loading“. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80174.
Der volle Inhalt der QuelleHwang, Y., und J. Wang. „How the Shear Wave Velocity Uncertainty Affects Soil-Structure Interaction on Liquefiable Soils?“ In 5th Asia Pacific Meeting on Near Surface Geoscience & Engineering. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202378075.
Der volle Inhalt der QuelleLi, Peizhen, Peng Zhao, Xilin Lu und Shenglong Cui. „Comparative Study on Dynamic Soil-Structure Interaction System with Nonliquefiable and Liquefiable Soil by Using Shaking Table Model Test“. In 7th International Conference on Tall Buildings. Singapore: Research Publishing Services, 2009. http://dx.doi.org/10.3850/9789628014194_0023.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Soil-pile interaction in liquefiable"
Han, Fei, Jeehee Lim, Rodrigo Salgado, Monica Prezzi und Mir Zaheer. Load and Resistance Factor Design of Bridge Foundations Accounting for Pile Group–Soil Interaction. Purdue University, November 2016. http://dx.doi.org/10.5703/1288284316009.
Der volle Inhalt der QuelleWang, Yao, Jeehee Lim, Rodrigo Salgado, Monica Prezzi und Jeremy Hunter. Pile Stability Analysis in Soft or Loose Soils: Guidance on Foundation Design Assumptions with Respect to Loose or Soft Soil Effects on Pile Lateral Capacity and Stability. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317387.
Der volle Inhalt der QuelleEbeling, Robert, Barry White, John Hite, James Tallent, Locke Williams, Brad McCoy, Aaron Hill, Cameron Dell, Jake Bruhl und Kevin McMullen. Load and resistance factors from reliability analysis Probability of Unsatisfactory Performance (PUP) of flood mitigation, batter pile-founded T-Walls given a target reliability index (𝛽). Engineer Research and Development Center (U.S.), Juli 2023. http://dx.doi.org/10.21079/11681/47245.
Der volle Inhalt der QuelleSECOND-ORDER DIRECT ANALYSIS FOR STEEL H-PILES ACCOUNTING FOR POST-DRIVING RESIDUAL STRESSES. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.349.
Der volle Inhalt der Quelle