Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „SOLAR DISTILLATION SYSTEM“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "SOLAR DISTILLATION SYSTEM" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "SOLAR DISTILLATION SYSTEM"
Prabhakaran, R. „Solar Distillation System“. International Journal for Research in Applied Science and Engineering Technology 7, Nr. 3 (31.03.2019): 2305–7. http://dx.doi.org/10.22214/ijraset.2019.3422.
Der volle Inhalt der QuelleHussain, Zawar, Anjum Munir, Junping Liu und Muhammad Sultan. „Experimental study on solar distillation system for oil extraction from eucalyptus plant leaves“. Thermal Science, Nr. 00 (2021): 340. http://dx.doi.org/10.2298/tsci210905340h.
Der volle Inhalt der QuelleBenziger, Jay. „The Borexino purification system“. International Journal of Modern Physics A 29, Nr. 16 (17.06.2014): 1442002. http://dx.doi.org/10.1142/s0217751x14420020.
Der volle Inhalt der QuelleAl-Nimr, Moh'd A., Suhil M. Kiwan und Samer Talafha. „Hybrid solar-wind water distillation system“. Desalination 395 (Oktober 2016): 33–40. http://dx.doi.org/10.1016/j.desal.2016.05.018.
Der volle Inhalt der QuelleKoschikowski, J., M. Wieghaus und M. Rommel. „Solar thermal driven desalination plants based on membrane distillation“. Water Supply 3, Nr. 5-6 (01.12.2003): 49–55. http://dx.doi.org/10.2166/ws.2003.0149.
Der volle Inhalt der QuelleCaturwati, Ni Ketut, Imron Rosyadi, Yusvardi Yusuf und Ehsan Tri Saputra. „Lauric Acid as an Energy Storage Material to Increase Distillation Solar Productivity in Indonesia“. Materials Science Forum 1057 (31.03.2022): 144–51. http://dx.doi.org/10.4028/p-11m66k.
Der volle Inhalt der QuelleTiwari, G. N., Pankaj Saxena und K. Thakur. „Thermal analysis of active solar distillation system“. Energy Conversion and Management 35, Nr. 1 (Januar 1994): 51–59. http://dx.doi.org/10.1016/0196-8904(94)90081-7.
Der volle Inhalt der QuelleGetachew, Seyoum, Addisu Bekele und Vivek Pandey. „Performance Investigation of Ethiopian Local Drinking Alcohol Distillation System Using Solar Dish Concentrator“. Journal of Energy 2022 (11.04.2022): 1–8. http://dx.doi.org/10.1155/2022/8478276.
Der volle Inhalt der QuelleZarzoum, K., M. M. Alquraish, K. Zhani und H. Ben Bacha. „Experimental validation of membrane distillation unit coupled with direct contact membrane using solar energy“. International Journal of Low-Carbon Technologies 18 (2023): 542–53. http://dx.doi.org/10.1093/ijlct/ctad011.
Der volle Inhalt der QuelleDardouch, J., M. Charia und A. Bernatchou. „Numerical study of a Solar Absorption Refrigeration Machine“. E3S Web of Conferences 150 (2020): 01009. http://dx.doi.org/10.1051/e3sconf/202015001009.
Der volle Inhalt der QuelleDissertationen zum Thema "SOLAR DISTILLATION SYSTEM"
Al-Madhhachi, Hayder. „Solar powered thermoelectric distillation system“. Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/107598/.
Der volle Inhalt der QuelleMkhize, Mfanafuthi Mthandeni. „Multistage solar still desalination system“. Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2848.
Der volle Inhalt der QuelleThe present study was centred on the design of a thermal multistage solar still desalination system. The design is a multistage with new configurations such as direct vapour input into each stage using vapour make-up tubes and the integration of a multistage with a basin type solar still. The incorporation of float a valve in the secondary seawater tank to regulate the seawater in the assembly eliminated the need of pumps to the system. The circulation of seawater between the evaporator and the evacuated tube solar collector (ETC) was through the pressure difference and the flow back was controlled through the incorporation of oneway flow valve. The ETC was used as a heat source to supply the thermal energy into the multistage system. The system had no electrical connections and therefore, no forced circulation as no pumps or any electrical components were used. The system consisted of six stages in total, the evaporator supplied the vapour to five of the six stages of the system. The system was tested on the roof of Mechanical Engineering Department and this location was chosen because of less sun’s intensity obstructions. The system was tested for nine (9) days but the distillate collection was not performed for the whole each day. This was due to the controlled access to the roof and the minor repairs that had to occur before the tests were conducted. The duration on which the tests were conducted varied in each day. The data was supposed to be logged from 08h00 am to 18h00 pm but this was not so due to the controlled access to where the tests were conducted. This data logging period was chosen based on the assumptions that the sun’s intensity would be at maximum within this period. The longest period of test was approximately 7 hours and the system managed to produce about 1500 ml and the maximum temperature for the day was 28oC. The system produced a minimum of 225 ml in the space of 3 hours and the temperature of the day was 26oC. The total amount of distillate produced was about 7600 ml and this amount was produced within the period of 49 hours. The 49 hours is equivalent to two days and 1 hour. It is anticipated that the system would have produced more should there be no repairs involved during the tests. The system produced a maximum of 48 ml at night and a minimum of 8ml in some nights. The night tests were not controlled and monitored due to limited access. It was noticed that the system was empty in each morning of the first few days of the tests. This emptiness contributed to the leakage occurred to the evaporator. The leakage of the evaporator was caused by unmonitored heat supplied by the ETC. The evaporator was constructed using unsuitable material and this was another factor which contributed towards the failure of the evaporator.
Alwaer, Ayad Almakhzum Mohamed. „A prototype desalination system using solar energy and heat pipe technology“. Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2455.
Der volle Inhalt der QuelleThe water desalination process needs large quantities of energy, either directly from fossil fuel or electricity from the national grid. However, these sources of energy significantly contribute to problems such as global warming in addition to creating a drain on the economy, due to their high cost. This dissertation is a description of the research undertaken with the aim of producing a water desalination prototype; a novel approach that was designed using state-of-the-art solar water heating equipment, incorporating the technologies of evacuated tubes and heat pipes. During the execution of the project, various modifications to the original commercially-available solar water heating system were attempted, each aimed at increasing the production of pure water. Finally, the system proved capable of producing a reasonable amount of pure water after twelve lengthy indoor experiments conducted in a laboratory in the department of Mechanical Engineering at the Cape Peninsula University of Technology, Bellville Campus, Cape Town, South Africa. Each experiment lasted five days on the basis of seven hours of exposure to an average amount of simulated solar radiation, followed by seventeen hours daily of inactivity and partial cooling down of the system.
Asim, Muhammad. „Experimental Analysis of Integrated System of Membrane Distillation for pure water with solar domestic hot water“. Thesis, KTH, Energiteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-141141.
Der volle Inhalt der QuelleZhou, Zexing. „Engineering design of thermochemical energy storage system to provide hot water suitable for membrane distillation operation“. Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/208079/1/Zexing_Zhou_Thesis.pdf.
Der volle Inhalt der QuelleMunir, Anjum [Verfasser]. „Design, development and modeling of a solar distillation system for the processing of medicinal and aromatic plants / Anjum Munir“. Kassel : Universitätsbibliothek Kassel, 2010. http://d-nb.info/1007323116/34.
Der volle Inhalt der QuelleRamos, Rafael Eug?nio Moura. „Estudo de um sistema h?brido de destila??o solar para polimento de ?guas produzidas“. Universidade Federal do Rio Grande do Norte, 2012. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15830.
Der volle Inhalt der QuelleThe oil industry, experiencing a great economic and environmental impact, has increasingly invested in researches aiming a more satisfactory treatment of its largest effluent, i.e., produced water. These are mostly discarded at sea, without reuse and after a basic treatment. Such effluent contains a range of organic compounds with high toxicity and are difficult to remove, such as polycyclic aromatic hydrocarbons, salts, heavy metals, etc.. The main objective of this work was to study the solar distillation of produced water pre-treated to remove salts and other contaminants trough of a hybrid system with a pre-heater. This developed apparatus was called solar system, which consists of a solar heater and a conventional distillation solar still. The first device consisted of a water tank, a solar flat plate collector and a thermal reservoir. The solar distillator is of simple effect, with 1m2 of flat area and 20? of inclination. This dissertation was divided in five steps: measurements in the solar system, i.e. temperatures and distillate flow rate and weather data; modeling and simulation of the system; study of vapor-liquid equilibrium of the synthetic wastewater by the aqueous solution of p-xylene; physical and chemical analyses of samples of the feed, distillate and residue, as well as climatology pertinent variables of Natal-RN. The solar system was tested separately, with the supply water, aqueous NaCl and synthetic oil produced water. Temperature measurements were taken every minute of the thermal reservoir, water tank and distillator (liquid and vapor phases). Data of solar radiation and rainfall were obtained from INPE (National Institute for Space Research). The solar pre-heater demonstrated to be effective for the liquid systems tested. The reservoir fluid had an average temperature of 58?C, which enabled the feed to be pre-heated in the distillator. The temperature profile in the solar distillator showed a similar behavior to daily solar radiation, with temperatures near 70?C. The distillation had an average yield of 2.4 L /day, i.e., an efficiency of 27.2%. Mathematical modeling aided the identification of the most important variables and parameters in the solar system. The study of the vapor-liquid equilibrium from Total Organic Carbon (TOC) analysis indicated heteroazeotropia and the vapor phase resulted more concentrated in p-xylene. The physical-chemical analysis of pH, conductivity, Total Dissolved Solids (TDS), chlorides, cations (including heavy metals) and anions, the effluent distillate showed satisfactory results, which presents a potential for reuse. The climatological study indicates the region of Natal-RN as favorable to the operation of solar systems, but the use of auxiliary heating during periods of higher rainfall and cloud cover is also recommended
A ind?stria do petr?leo, sentindo um grande impacto econ?mico e ambiental, tem investido crescentemente em pesquisas visando a um tratamento mais satisfat?rio de seu maior efluente: as ?guas produzidas em campos de produ??o. Estas s?o, em sua maioria, descartadas no mar, sem aproveitamento, ap?s serem tratadas. Esse tipo de efluente cont?m uma gama de compostos org?nicos de alta toxicidade e dif?cil remo??o, como hidrocarbonetos polic?clicos arom?ticos, al?m de sais, metais pesados etc. O objetivo principal desse trabalho foi estudar a destila??o solar da ?gua de produ??o pr?-tratada para remo??o de sais e contaminantes da mesma a partir do uso de um sistema h?brido com pr?-aquecimento. Este aparato desenvolvido foi denominado de sistema solar, que ? composto por um aquecedor solar convencional e um destilador solar; o primeiro constitui-se de uma caixa d'?gua, uma placa coletora solar plana e um reservat?rio t?rmico; o destilador solar ? de simples efeito, com 1m2 de ?rea ?til e 20? de inclina??o na cobertura. A metodologia consistiu em cinco etapas: experimentos no sistema solar, com medi??o de temperaturas e de destilado obtido e obten??o de dados climatol?gicos; modelagem e simula??o do sistema; estudo de equil?brio l?quido-vapor de um efluente modelo de solu??o aquosa de p-xileno; realiza??o de an?lises f?sico-qu?micas de amostras de alimenta??o, destilado e res?duo; e um estudo climatol?gico da cidade de Natal-RN. O sistema solar foi testado, separadamente, com ?gua de abastecimento, solu??o aquosa sint?tica de NaCl e ?gua produzida de petr?leo. Foram realizadas medi??es de temperatura, a cada minuto, no reservat?rio t?rmico, na caixa d??gua e no destilador (fases l?quida e vapor). Dados de radia??o solar e precipita??o pluviom?trica foram obtidos do INPE (Instituto Nacional de Pesquisas Espaciais). O pr?-aquecimento solar mostrou-se eficiente para os l?quidos testados e o fluido no reservat?rio t?rmico apresentou uma temperatura m?dia de 58 ?C, o que viabilizou a alimenta??o aquecida no destilador. O perfil de temperaturas no destilador solar apresentou comportamento similar ? radia??o solar di?ria, com temperaturas m?ximas pr?ximas a 70 ?C. Esse equipamento teve rendimento m?dio de 2,52 L/d e efici?ncia m?dia de 27,2%. A modelagem matem?tica permitiu identificar as vari?veis e par?metros mais influentes no sistema solar. O estudo do equil?brio l?quido-vapor, a partir de an?lise de TOC, indicou condi??o de heteroazeotropia, com o p-xileno se concentrando na fase vapor. As an?lises f?sico-qu?micas de pH, condutividade, STD, cloretos, c?tions (incluindo metais pesados) e ?nions, do efluente destilado apresentaram resultados satisfat?rios, o que evidencia um potencial de reuso. O estudo climatol?gico indica a cidade ou a regi?o de Natal-RN como favor?vel ? opera??o de sistemas solares, mas o uso de aquecimento auxiliar nos per?odos de maior pluviosidade e nebulosidade ? recomendado
Nguyen, Bao The. „Feasibility of solar hot water and distillation systems in Vietnam“. Thesis, Nguyen, Bao The (1998) Feasibility of solar hot water and distillation systems in Vietnam. PhD thesis, Murdoch University, 1998. https://researchrepository.murdoch.edu.au/id/eprint/52389/.
Der volle Inhalt der QuelleMa, Qiuming. „Etude de faisabilité d'un module plan intégrant distillation membranaire et collecteur solaire pour le dessalement autonome et décentralisé d'eau de mer : conception, modélisation et optimisation pour une application aux petites communautés isolées“. Thesis, Toulouse, INSA, 2019. http://www.theses.fr/2019ISAT0006.
Der volle Inhalt der QuelleSmall-scale desalination at the point of use offers a potential access to drinking water to communities living in remote coastal areas or isolated islands. In this dissertation, Membrane Distillation (MD) is the applied technology for the aforementioned application scenario. Moreover, the target places are also often in the lack of stable and centralized heat and power supply, while most of them benefit from high solar radiations. In order to further reduce the system heat loss and to intensify the process, the integration in the same module of flat-sheet distillation membranes for Vacuum MD (VMD) and direct solar heating by flat-plate collector (FPC) appears as a possible option. This study aims to explore the feasibility of this concept and to determine the more favorable design and operating conditions for the target application. The main task in this regard is to reduce electricity consumption (provided by photovoltaic PV panels) and simultaneously improve the energy efficiency and water production throughout the VMD-FPC module. The sensitivity analyses and multi-objective optimizations are conducted based on series of simulations. Results show that the potential daily productivity of the system can reach up to 96 L for a module surface area of 3 m2. A quasi-constant power cost of PV of 4.2 - 5.0 W L-1 is observed, permitting a flexible adjustment of the system capacity. Under a limitation of an average PV power of 130 W, more than 30 L of distillate can be obtained with a surface area of 0.83 m2 on a sunny summer-day in Toulouse, taking the optimized operating parameters and real-world material properties into account
Yadav, Jeetendra Kumar. „Energy and exergy analysis of active photovoltaic thermal solar distillation system“. Thesis, 2017. http://localhost:8080/xmlui/handle/12345678/7310.
Der volle Inhalt der QuelleBücher zum Thema "SOLAR DISTILLATION SYSTEM"
Tiwari, G. N., und Lovedeep Sahota. Advanced Solar-Distillation Systems. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4672-8.
Der volle Inhalt der QuelleNarayanan, Lakshmi. Design and Fabrication of Solar Water Distillation System. Independently Published, 2018.
Den vollen Inhalt der Quelle findenTiwari, A. K., und G. N. Tiwari. Solar Distillation Practice For Water Desalination Systems. Anshan Publishers, 2008.
Den vollen Inhalt der Quelle findenN, Tiwari G., und Lovedeep Sahota. Advanced Solar Distillation Systems: Basic Principles, Thermal Modeling and Applications. Springer, 2017.
Den vollen Inhalt der Quelle findenGaur, Manoj Kumar, Brian Norton und Gopal Tiwari, Hrsg. Solar Thermal Systems: Thermal Analysis and its Application. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150509501220101.
Der volle Inhalt der QuelleN, Tiwari G., und Lovedeep Sahota. Advanced Solar-Distillation Systems: Basic Principles, Thermal Modeling, and Its Application. Springer, 2017.
Den vollen Inhalt der Quelle findenN, Tiwari G., und Lovedeep Sahota. Advanced Solar-Distillation Systems: Basic Principles, Thermal Modeling, and Its Application. Springer, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "SOLAR DISTILLATION SYSTEM"
Zheng Li, Jeremy. „Solar Energy System for Water Distillation“. In CAD, 3D Modeling, Engineering Analysis, and Prototype Experimentation, 17–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05921-1_2.
Der volle Inhalt der QuelleKhandelwal, Neelam, Jatin Singh, Ishita Singh, Manikant Singh und Raj Kumar Kesharwani. „Design Analysis of Solar Water Distillation System by Using Flat Plate Collector“. In Lecture Notes in Mechanical Engineering, 169–78. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3498-8_15.
Der volle Inhalt der QuelleAhmad, Nordila, Norhasirah Mohd Isa, Zuliziana Suif, Maidana Othman, Jestin Jelani und Jaafar Adnan. „Productivity Enhancement of Solar Still Distillation System Using Immersion-Type Water Heater“. In Sustainable Development of Water and Environment, 27–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75278-1_3.
Der volle Inhalt der QuelleJoshi, Sandeep, Shubham Tagde, Aboli Pingle, Nikhil Bhave und Tushar Sathe. „Performance Analysis of Corrugated Inclined Basin Solar Distillation System Coupled with Parabolic Trough Collector“. In Advances in Mechanical Engineering, 9–15. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3639-7_2.
Der volle Inhalt der QuelleMeena, Pankaj Kumar, Shivanshu Sharma und Namrata Sengar. „Development of Pyramid-Shaped Solar Distillation System and Experiments with Different Absorber Coating Materials“. In Lecture Notes in Electrical Engineering, 285–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1186-5_24.
Der volle Inhalt der QuelleHanoin, M. A. H. M., N. M. Mokhtar, N. S. Abu, F. N. Zainuddin, L. K. Yi und M. S. Hadi. „Integration of Parabolic Solar Thermal Collector with Direct Contact Membrane Distillation System for Seawater Desalination“. In Lecture Notes in Mechanical Engineering, 267–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9505-9_26.
Der volle Inhalt der QuelleTiwari, G. N., Arvind Tiwari und Shyam. „Solar Distillation“. In Energy Systems in Electrical Engineering, 519–53. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0807-8_13.
Der volle Inhalt der QuelleTiwari, G. N., und Lovedeep Sahota. „Solar Collectors“. In Advanced Solar-Distillation Systems, 157–210. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4672-8_4.
Der volle Inhalt der QuelleTiwari, G. N., und Lovedeep Sahota. „Economic Analysis of Solar-Distillation Systems“. In Advanced Solar-Distillation Systems, 361–401. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4672-8_10.
Der volle Inhalt der QuelleTiwari, G. N., und Lovedeep Sahota. „History of Passive Solar-Distillation Systems“. In Advanced Solar-Distillation Systems, 121–55. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4672-8_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "SOLAR DISTILLATION SYSTEM"
Beitelmal, Abdlmonem, Drazen Fabris und Reece Kiriu. „Solar-Powered Water Distillation System“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63786.
Der volle Inhalt der QuelleBadran, Omar O., Ismail M. A. Arafat und Salah A. Abdallah. „Parabolic Sun Tracking Solar Distillation System“. In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90222.
Der volle Inhalt der QuelleSleiti, Ahmad K., Wahib A. Al-Ammari und Mohammed Al-Khawaja. „Novel Solar driven Cooling System Integrated with Solar Still System“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0055.
Der volle Inhalt der QuelleJuárez-Trujillo, Armando, Ignacio Martin-Dominguez und Maria Teresa Alarcón-Herrera. „Using TRNSYS Simulation to Optimize the Design of a Solar Water Distillation System“. In ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.05.04.
Der volle Inhalt der QuelleYang, S. Y., H. Mohamed und Z. F. Mohamad Rafaai. „Design and development of passive solar water distillation system“. In ADVANCES IN MATERIAL SCIENCE AND MANUFACTURING ENGINEERING. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0119885.
Der volle Inhalt der QuelleBamasag, Ahmad, Talal Alqahtani, Shahnawaz Sinha und Patrick Phelan. „Experimental Investigation of a Membrane Distillation System Using Solar Evacuated Tubes“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11486.
Der volle Inhalt der QuelleGonza´lez, R., P. Pieretti und H. Diaz. „Design Algorithm of a Multi-Effect Humidification–Dehumidification Solar Distillation System“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13051.
Der volle Inhalt der QuellePrasanna, Y. S., und Sandip S. Deshmukh. „Solar Distillation Systems Enriched With Machine Learning Techniques: A Review“. In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-71174.
Der volle Inhalt der QuelleShabgard, Hamidreza, Ben Xu und Ramkumar Parthasarathy. „Solar Thermal-Driven Multiple-Effect Thermosyphon Distillation System for Waste Water Treatment“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72492.
Der volle Inhalt der QuelleGarmoud, Eman A. „Practical Investigation of Some Characteristics of the Solar Distillation System for Solar Water Desalination“. In 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA. IEEE, 2021. http://dx.doi.org/10.1109/mi-sta52233.2021.9464380.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "SOLAR DISTILLATION SYSTEM"
Nenoff, Tina M., Sarah E. Moore, Sera Mirchandani, Vasiliki Karanikola, Robert G. Arnold und Eduardo Saez. Multi-objective Optimization of Solar-driven Hollow-fiber Membrane Distillation Systems. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1395756.
Der volle Inhalt der Quelle