Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Solid state chemistry. Skutterudite Thermoelectric materials“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solid state chemistry. Skutterudite Thermoelectric materials" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Solid state chemistry. Skutterudite Thermoelectric materials"
Guo, Lijie, Zhengwei Cai, Xiaolong Xu, Kunling Peng, Guiwen Wang, Guoyu Wang und Xiaoyuan Zhou. „Raising the Thermoelectric Performance of Fe3CoSb12 Skutterudites via Nd Filling and In-Situ Nanostructuring“. Journal of Nanoscience and Nanotechnology 16, Nr. 4 (01.04.2016): 3841–47. http://dx.doi.org/10.1166/jnn.2016.11900.
Der volle Inhalt der QuelleGraff, J. W., X. Zeng, A. M. Dehkordi, J. He und T. M. Tritt. „Exceeding the filling fraction limit in CoSb3 skutterudite: multi-role chemistry of praseodymium leading to promising thermoelectric performance“. J. Mater. Chem. A 2, Nr. 23 (2014): 8933–40. http://dx.doi.org/10.1039/c4ta00600c.
Der volle Inhalt der QuelleChen, Lidong. „Synthesis and Thermoelectric Properties of Filled Skutterudite by a Solid Reaction Method.“ Journal of the Japan Society of Powder and Powder Metallurgy 46, Nr. 9 (1999): 921–26. http://dx.doi.org/10.2497/jjspm.46.921.
Der volle Inhalt der QuelleTang, X. F., L. D. Chen, T. Goto, T. Hirai und R. Z. Yuan. „Synthesis and thermoelectric properties of p-type barium-filled skutterudite BayFexCo4−xSb12“. Journal of Materials Research 17, Nr. 11 (November 2002): 2953–59. http://dx.doi.org/10.1557/jmr.2002.0428.
Der volle Inhalt der QuelleKim, Suk Lae, Jui-Hung Hsu und Choongho Yu. „Thermoelectric effects in solid-state polyelectrolytes“. Organic Electronics 54 (März 2018): 231–36. http://dx.doi.org/10.1016/j.orgel.2017.12.021.
Der volle Inhalt der QuelleUr, Soon-Chul, Philip Nash und Il-Ho Kim. „Solid-state syntheses and properties of Zn4Sb3 thermoelectric materials“. Journal of Alloys and Compounds 361, Nr. 1-2 (Oktober 2003): 84–91. http://dx.doi.org/10.1016/s0925-8388(03)00418-3.
Der volle Inhalt der QuelleIoannou, M., G. Polymeris, E. Hatzikraniotis, A. U. Khan, K. M. Paraskevopoulos und Th Kyratsi. „Solid-State Synthesis and Thermoelectric Properties of Sb-Doped Mg2Si Materials“. Journal of Electronic Materials 42, Nr. 7 (09.02.2013): 1827–34. http://dx.doi.org/10.1007/s11664-012-2442-6.
Der volle Inhalt der QuellePark, K., S. W. Nam und C. H. Lim. „Thermoelectric properties of p-type Bi0.5Sb1.5Te3 for solid-state cooling devices“. Intermetallics 18, Nr. 9 (September 2010): 1744–49. http://dx.doi.org/10.1016/j.intermet.2010.05.011.
Der volle Inhalt der QuelleObata, Kohei, Yasunori Chonan, Takao Komiyama, Takashi Aoyama, Hiroyuki Yamaguchi und Shigeaki Sugiyama. „Grain-Oriented Ca3Co4O9 Thermoelectric Oxide Ceramics Prepared by Solid-State Reaction“. Journal of Electronic Materials 42, Nr. 7 (07.05.2013): 2221–26. http://dx.doi.org/10.1007/s11664-013-2585-0.
Der volle Inhalt der QuelleZhang, Qi, Renshuang Zhai, Teng Fang, Kaiyang Xia, Yehao Wu, Feng Liu, Xinbing Zhao und Tiejun Zhu. „Low-cost p-type Bi2Te2.7Se0.3 zone-melted thermoelectric materials for solid-state refrigeration“. Journal of Alloys and Compounds 831 (August 2020): 154732. http://dx.doi.org/10.1016/j.jallcom.2020.154732.
Der volle Inhalt der QuelleDissertationen zum Thema "Solid state chemistry. Skutterudite Thermoelectric materials"
Smalley, Arwyn Lisa Emrys. „Synthesis, crystal chemistry, and properties of skutterudites /“. view abstract or download file of text, 2005. http://wwwlib.umi.com/cr/uoregon/fullcit?p3190549.
Der volle Inhalt der QuelleTypescript. Includes vita and abstract. Includes bibliographical references (leaves 110-113). Also available for download via the World Wide Web; free to University of Oregon users.
Li, Jing-feng. „Structure and properties of BiCuSeO-type thermoelectric materials“. Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112152.
Der volle Inhalt der QuelleThe thermoelectric (TE) energy conversion technology, which can be used to convert wasted heat into electricity, has received much attention in the past decade. The efficiency of TE devices is characterized by the dimensionless figure of merit ZT=(S²σ/κ)T, where S, σ, κ, and T are the Seebeck coefficient, the electrical conductivity, the thermal conductivity, and the absolute temperature, respectively.Recently, copper chalcogenides based materials have attracted extensive interest in the thermoelectric community due to low thermal conductivities, which lead to the promising excellent thermoelectric properties. BiCuSeO and BaCu2Se2 are two of them. They exhibit intrinsically very low thermal conductivity and large Seebeck coefficient. But their electrical conductivity is low, limiting the enhancement of their thermoelectric properties.In this thesis, Ba doping and texture are taken out in BiCuSeO to improve its electrical conductivity. Se is substituted by S in BiCuSeO to decrease its price and decrease its thermal conductivity. Na doping is taken out in BaCu2Se2 to increase its carrier concentration and improve its electrical conductivity
Soheilnia, Navid. „Thermoelectric properties of new transition metal arsenides and antimonides“. Thesis, 2007. http://hdl.handle.net/10012/2757.
Der volle Inhalt der QuelleLi, Jing. „Structure and properties of BiCuSeO-type thermoelectric materials“. Thesis, 2015. http://www.theses.fr/2015PA112152/document.
Der volle Inhalt der QuelleThe thermoelectric (TE) energy conversion technology, which can be used to convert wasted heat into electricity, has received much attention in the past decade. The efficiency of TE devices is characterized by the dimensionless figure of merit ZT=(S²σ/κ)T, where S, σ, κ, and T are the Seebeck coefficient, the electrical conductivity, the thermal conductivity, and the absolute temperature, respectively.Recently, copper chalcogenides based materials have attracted extensive interest in the thermoelectric community due to low thermal conductivities, which lead to the promising excellent thermoelectric properties. BiCuSeO and BaCu2Se2 are two of them. They exhibit intrinsically very low thermal conductivity and large Seebeck coefficient. But their electrical conductivity is low, limiting the enhancement of their thermoelectric properties.In this thesis, Ba doping and texture are taken out in BiCuSeO to improve its electrical conductivity. Se is substituted by S in BiCuSeO to decrease its price and decrease its thermal conductivity. Na doping is taken out in BaCu2Se2 to increase its carrier concentration and improve its electrical conductivity
Buchteile zum Thema "Solid state chemistry. Skutterudite Thermoelectric materials"
Kanatzidis, Mercouri G. „Chapter 3 The role of solid-state chemistry in the discovery of new thermoelectric materials“. In Recent Trends in Thermoelectric Materials Research I, 51–100. Elsevier, 2001. http://dx.doi.org/10.1016/s0080-8784(01)80149-6.
Der volle Inhalt der QuelleRathnayake, Hemali, und Sheeba Dawood. „Coordination Polymer Frameworks for Next Generation Optoelectronic Devices“. In Optoelectronics [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94335.
Der volle Inhalt der Quelle