Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „STEEP ANGLE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "STEEP ANGLE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "STEEP ANGLE"
Brüninghaus, Jan, Anna Oster und Bernd Kuhlenkötter. „Accuracy and Material Properties in Incremental Forming for a Multi-Step Expanding Approach“. Key Engineering Materials 639 (März 2015): 179–86. http://dx.doi.org/10.4028/www.scientific.net/kem.639.179.
Der volle Inhalt der QuellePurnomo, Dhika Aditya, Fipka Bisono und Rizal Indrawan. „Analysis of Threshold Angle Variations on The Quality of Finishing Free-form Surface in CNC Milling Process“. International Journal of Science, Engineering and Information Technology 6, Nr. 2 (31.07.2022): 318–22. http://dx.doi.org/10.21107/ijseit.v6i2.14952.
Der volle Inhalt der QuelleSun, Zhicheng, Aoyu Zhang, Xiaotong Li und Yuan Xue. „Test Analysis of 220 kV Rotating Transmission Angle Tower“. Journal of Physics: Conference Series 2557, Nr. 1 (01.07.2023): 012031. http://dx.doi.org/10.1088/1742-6596/2557/1/012031.
Der volle Inhalt der QuelleGilbert, Kenneth E. „Wide-angle formulation of the Beilis-Tappert method“. Journal of the Acoustical Society of America 152, Nr. 2 (August 2022): 1170–79. http://dx.doi.org/10.1121/10.0013727.
Der volle Inhalt der QuelleMakarov, V. N., V. Ya Potapov, N. V. Makarov und A. V. Ugolnikov. „GENESIS OF EFFICIENCY OF STEEP ANGLE CONVEYOR BELTS“. MINING INFORMATIONAL AND ANALYTICAL BULLETIN 5 (2018): 165–70. http://dx.doi.org/10.25018/0236-1493-2018-5-0-165-170.
Der volle Inhalt der QuelleLoye, A., M. Jaboyedoff und A. Pedrazzini. „Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis“. Natural Hazards and Earth System Sciences 9, Nr. 5 (08.10.2009): 1643–53. http://dx.doi.org/10.5194/nhess-9-1643-2009.
Der volle Inhalt der QuelleGlen, F., A. C. Broderick, B. J. Godley, J. D. Metcalfe und G. C. Hays. „Dive angles for a green turtle (Chelonia mydas)“. Journal of the Marine Biological Association of the United Kingdom 81, Nr. 4 (August 2001): 683–86. http://dx.doi.org/10.1017/s0025315401004374.
Der volle Inhalt der QuelleWesley, Laurence D. „Coulomb wedge analysis of cuts in steep slopes“. Canadian Geotechnical Journal 38, Nr. 6 (01.12.2001): 1354–59. http://dx.doi.org/10.1139/t01-049.
Der volle Inhalt der QuelleHong, Yung-Shan, Rong-Her Chen, Cho-Sen Wu und Jian-Ren Chen. „Shaking table tests and stability analysis of steep nailed slopes“. Canadian Geotechnical Journal 42, Nr. 5 (01.10.2005): 1264–79. http://dx.doi.org/10.1139/t05-055.
Der volle Inhalt der QuelleMajidov, Takhir, und Nazir Ikramov. „Influence of flow hydraulic characteristics on the ridge lower escarpment angle“. E3S Web of Conferences 264 (2021): 03015. http://dx.doi.org/10.1051/e3sconf/202126403015.
Der volle Inhalt der QuelleDissertationen zum Thema "STEEP ANGLE"
Birner, Sabrina Marguerite. „Steep reference angle holography : analysis and applications“. Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/71398.
Der volle Inhalt der QuelleSibold, Ridge Alexander. „The Effect of Density Ratio on Steep Injection Angle Purge Jet Cooling for a Converging Nozzle Guide Vane Endwall at Transonic Conditions“. Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/102650.
Der volle Inhalt der QuelleMaster of Science
Kennedy, Richard C. „A Study on the Effect of Jumbo Angles on the Strength and Stiffness of Top-and-Seat Angle Connections“. University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1416233620.
Der volle Inhalt der QuelleGassner, Alexandra Carina. „The character of the core-mantle boundary : a systematic study using PcP“. Bachelor's thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6359/.
Der volle Inhalt der Quelle-15% VS and +5% density explain the measured PcP amplitudes. Moreover, below SW Finland and NNW of the Caspian Sea a CMB topography can be assumed. The amplitude measurements indicate a wavelength of 200 km and a height of 1 km topography, previously also shown in the study by Kampfmann and Müller (1989). Better constraints might be provided by a joined analysis of seismological data, mineralogical experiments and geodynamic modelling.
Unter der Annahme, dass flüssiges Eisen aus dem äußeren Erdkern mit dem festen, silikat-reichen Unteren Mantel reagiert, wird eine Einflussnahme auf die Kern-Mantel Reflexionsphase PcP erwartet. Ist die Kern-Mantel Grenze aufgeweicht, und nicht wie bislang angenommen ein diskreter Übergang, so zeichnet sich dies in der Wellenform und Amplitude von PcP ab. Die Interaktion mit Eisen führt zu teilweise aufgeschmolzenen Bereichen höherer Dichte, welche die seismischen Wellengeschwindigkeiten herabsetzen. Basierend auf den Berechnungen von kurzperiodischen synthetischen Seismogrammen, mittels der Reflektivitäts- und Gauss Beam Methode, soll ein möglicher Modellraum dieser Niedriggeschwindigkeitszonen ermittelt werden. Das Ziel dieser Arbeit ist es das Verhalten von PcP im Distanzbereich von 10° bis 40° unter dem Einfluss dieser Modelle mit diversen Geschwindigkeits- und Dichtekontrasten zu untersuchen. Ferner wird das Auflösungsvermögen hinsichtlich seismischer Daten diskutiert. Entscheidende Parameter wie Anomaliedicke, Quellfrequenz und Topographie werden hierbei analysiert. Tiefe Erdbeben und Kernexplosionen, die sich im entsprechenden Entfernungsbereich zum Gräfenberg und NORSAR Array befinden, werden anschließend im Hinblick auf PcP ausgewertet. Das seismische Auflösungsvermögen von Niedriggeschwindigkeitszonen ist stark begrenzt sowohl in Bezug auf Geschwindigkeits- und Dichtekontraste als auch hinsichtlich der Mächtigkeit. Es besteht sogar die Möglichkeit einer dünnen, globalen Kern-Mantel Übergangszone, selbst mit großen Impedanzkontrasten, ohne dass dies mit seismologischen Methoden detektiert werden könnte: Wird kein precursor zu PcP beobachtet aber das PcPmodel /PcPsmooth Amplitudenverhältnis zeigt gleichzeitig eine Reduktion von mehr als 10%, dann könnte eine sehr dünne Niedriggeschwindigkeitszone von ca. 5 km Mächtigkeit und einer Diskontinuität erster Ordnung vorliegen. Andererseits, ist PcP um weniger als 10% reduziert, könnte dies entweder auf eine dünne, moderate Niedriggeschwindigkeitszone oder einen graduellen Kern-Mantel Übergang hindeuten. Die synthetischen Berechnungen ergeben starke Amplitudenvariationen als Funktion der Distanz, welche auf den Impedanzkontrast zurückzuführen sind. Dabei ergibt sich ein primärer Dichteeffekt im extremen Steilwinkelbereich und ein maßgeblicher Geschwindigkeitseinfluss im Weitwinkelbereich. Im Hinblick auf die modellierten Resultate lässt sich eine 10 - 13.5 km mächtige Niedriggeschwindigkeitszone 600 km südöstlich von Moskau mit einer NW-SE Ausdehnung von mindestens 450 km folgern, wobei eine exakte Aussage über Geschwindigkeiten und Dichte nicht möglich ist. Dies ist im Konsens mit den synthetischen Berechnungen, wonach viele unterschiedliche Modelle ähnliche Amplituden- und Wellenformcharakteristiken erzeugen. Zum Beispiel erklärt ein Modell mit Kontrasten von -5% VP
-15% VS and +5% Dichte die gemessenen PcP Amplituden. Darüber hinaus können unterhalb des südwestlichen Finnlands und nord-nordwestlich des Kaspischen Meeres Undulationen an der Kern-Mantel Grenze selbst vermutet werden. Unter Berücksichtigung früherer Studien, z. B. von Kampfmann and Müller (1989), deuten die Messergebnisse auf eine laterale Topographie von 200 km und eine Höhe von 1 km hin. Eine Eingrenzung der potentiellen Anomaliemodelle kann nur durch eine gemeinsame Auswertung mit mineralogischen Experimenten und geodynamischen Modellierungen erfolgen.
Shani, Mehul A. „Compressive strength of eccentrically loaded steel angles“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0013/MQ52481.pdf.
Der volle Inhalt der QuelleGAO, XIAOJIANG. „STRENGTH DETERMINATION OF HEAVY CLIP-ANGLE CONNECTION COMPONENTS“. University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1134401462.
Der volle Inhalt der QuelleLeong, Chuen Shiong. „Repair/strengthening of steel angles using thermal spray metallizing“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0013/MQ53172.pdf.
Der volle Inhalt der QuelleWeiner, Stephen (Stephen Andrew). „Design of mechanical testing device to measure break angle of thin, stainless steel“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32969.
Der volle Inhalt der QuelleIncludes bibliographical references (leaf 25).
Working with Gillette Corporation, an automated mechanical testing tool that bent a small flat piece of steel was designed. The design of the tool was an effort to improve upon previous generations of the same tool. It consisted of three main elements; a servomotor, connected to a torque transducer, which was connected to a break device. A thin piece of steel was loaded into the break device and the motor was activated, moving a flipper arm on the device which bent the steel. While bending this piece of steel, the torque transducer would relay torque and angle information to a computer. This information was collected and displayed in Excel as torque versus angle plots, which would show the moment at which the piece of steel was broken. This entire process was automated so that after loading the steel, one click of a button would run one test. Razorblades were primarily bent with the device until they would break, and for this reason, the measuring tool was called the 'blade break test.' The work consisted of designing a robust mechanical system coupling the three devices mentioned above in series. Code was written in Visual Basic that managed all the individual devices in the measuring tool, getting them to work together and linking them with a computer.
(cont.) A user interface was designed with engineers in mind, imbedding automated data collection and representation through Excel. Finally, a manual was created accompanying the device so other engineers could use, troubleshoot, and modify the 'break test.' The result of this project was the creation of a successful measuring instrument with full documentation and functionality.
by Stephen Weiner.
S.B.
Reynolds, Nicholas A. „Behavior and design of concentrically loaded duplex stainless steel single equal-leg angle struts“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49074.
Der volle Inhalt der QuelleKnobel, Christian. „Optimal control allocation for road vehicle dynamics using wheel steer angles, brake, drive torques camber angles“. Düsseldorf VDI-Verl, 2009. http://d-nb.info/992593425/04.
Der volle Inhalt der QuelleBücher zum Thema "STEEP ANGLE"
Branstetter, J. Robert. B-737 flight test of curved-path and steep-angle approaches using MLS guidance. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenBranstetter, J. Robert. B-737 flight test of curved-path and steep-angle approaches using MLS guidance. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenUnited States International Trade Commission. Stainless steel angles from Japan. Washington, DC: U.S. International Trade Commission, 1994.
Den vollen Inhalt der Quelle findenB, Kennedy John, Hrsg. Single and compound angle members: Structural analysis and design. London: Elsevier Applied Science, 1985.
Den vollen Inhalt der Quelle findenAmerican Institute of Steel Construction. Load and resistance factor design specification for single-angle members. Chicago, IL: American Institute of Steel Construction, 2001.
Den vollen Inhalt der Quelle findenVlachos, Konstantinos. A wide angle split-step parabolic equation model for propagation predictions over terrain. Monterey, Calif: Naval Postgraduate School, 1996.
Den vollen Inhalt der Quelle findenFraser, George MacDonald. The steel bonnets: The story of the Anglo-Scottish Border reivers. London: Collins Harvill, 1989.
Den vollen Inhalt der Quelle findenMeador, Don A. How to build the mighty metal miter for cutting angle, square, flat, and round steel. Freeman, MO: Millenial Marketing, 1997.
Den vollen Inhalt der Quelle findenStep down Shakespeare, the stone angel is here: Essays on literature : Canadian and Sri Lankan. Colombo: Godage International Publishers, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "STEEP ANGLE"
Barcewicz, W., S. Wierzbicki, M. A. Giżejowski, S. Labocha und R. Czyż. „Experimental investigation of angle length effect – angles in tension connected by one leg“. In Modern Trends in Research on Steel, Aluminium and Composite Structures, 85–91. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-7.
Der volle Inhalt der QuelleTatsumi, Nobuhiko, und Shoichi Kishiki. „Connection Strength of Braces with Angle Steel and Channel Steel“. In Lecture Notes in Civil Engineering, 319–26. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03811-2_31.
Der volle Inhalt der QuelleMoradi, Sona, Saeid Kamal und Savvas G. Hatzikiriakos. „Laser Ablated Micro/Nano-Patterned Superhydrophobic Stainless Steel Substrates“. In Advances in Contact Angle, Wettability and Adhesion, 285–304. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119117018.ch11.
Der volle Inhalt der QuelleTylek, Izabela Alicja. „Random Initial Twist Angle of Steel Multistory Building Frames“. In Design, Fabrication and Economy of Metal Structures, 357–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36691-8_54.
Der volle Inhalt der QuelleDe Matteis, G., R. Landolfo und L. Calado. „Cyclic behavior of semi-rigid angle connections: A comparative study of tests and modeling“. In Behaviour of Steel Structures in Seismic Areas, 165–74. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-24.
Der volle Inhalt der QuelleBehzadi-Sofiani, B., L. Gardner und M. A. Wadee. „Numerical simulation and design of steel equal-leg angle section beams“. In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 937–43. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-153.
Der volle Inhalt der QuelleBehzadi-Sofiani, B., L. Gardner und M. A. Wadee. „Numerical simulation and design of steel equal-leg angle section beams“. In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 327–28. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-153.
Der volle Inhalt der QuelleZhong, C., Z. M. Shang, G. J. Wen, X. Liu, H. M. Wang und C. Li. „A Step-by-Step Exact Measuring Angle Calibration Applicable for Multi-Detector Stitched Aerial Camera“. In 5th International Symposium of Space Optical Instruments and Applications, 235–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27300-2_23.
Der volle Inhalt der QuelleBeyer, A., A. Bureau, J.-P. Jaspart, J. F. Demonceau und M.-Z. Bezas. „Torsional, flexural and torsional-flexural buckling of angle section members – an analytical approach“. In Modern Trends in Research on Steel, Aluminium and Composite Structures, 400–406. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-51.
Der volle Inhalt der QuelleBernatowska, E., und L. Ślęczka. „Failure modes of steel angles connected by one leg“. In Modern Trends in Research on Steel, Aluminium and Composite Structures, 307–13. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-38.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "STEEP ANGLE"
Shan, Guojian, und Biondo Biondi. „Angle‐domain common‐image gathers for steep reflectors“. In SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2008. http://dx.doi.org/10.1190/1.3063982.
Der volle Inhalt der QuelleLee, Jong-Sen, Thomas L. Ainsworth und Yanting Wang. „Polarization Orientation Angle and Scattering Characteristics of Steep Terrain“. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8517678.
Der volle Inhalt der QuelleLiang, Liting, Yunhua Zhang und Dong Li. „Range Extension of Polarization Orientation Angle Estimation over Steep Terrain“. In 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2019. http://dx.doi.org/10.1109/apsar46974.2019.9048475.
Der volle Inhalt der QuelleJia, Xiaofeng, und Ru‐Shan Wu. „Imaging steep salt flanks by super‐wide angle one‐way method“. In SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, 2007. http://dx.doi.org/10.1190/1.2792936.
Der volle Inhalt der QuelleXu-hui Fu und Jiang Hu. „Influence of flow angle on local scour depth in steep gravel river“. In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, 2011. http://dx.doi.org/10.1109/icetce.2011.5775445.
Der volle Inhalt der QuelleChang, Guiping, Ming Zhu, Rui Tang, Zhiyun Tian, Lixin Ai, Jihuan Peng, Lianguang Ning und Lei Wang. „Optimal Design for High and Steep Slope Angle of Open-pit Mine“. In 2010 Third International Conference on Information and Computing Science (ICIC). IEEE, 2010. http://dx.doi.org/10.1109/icic.2010.91.
Der volle Inhalt der QuelleElahi, Mirza M., und Avik W. Ghosh. „Current saturation and steep switching in graphene PN junctions using angle-dependent scattering“. In 2016 74th Annual Device Research Conference (DRC). IEEE, 2016. http://dx.doi.org/10.1109/drc.2016.7548421.
Der volle Inhalt der QuellePereira, Paulo S. D., Marcio M. Mourelle und Ludimar L. de Aguiar. „Steel Steep Wave Riser as an Alternative Configuration for FPSO’s Compliant Risers“. In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41098.
Der volle Inhalt der QuellePeter, Jennifer, Jovauna M. Currey, Meir Marmor, Jenni M. Buckley und William McGann. „Validation of a Simple, Laser-Guided System for Prescribing Acetabular Cup Inclination Angle in Total Hip Arthroplasty“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206322.
Der volle Inhalt der QuelleSprague, James K., und Shyi-Ping Liu. „Automated Stability Analysis of a Vehicle in Combined Pitch and Roll“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33184.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "STEEP ANGLE"
Ostashev, Vladimir, Michael Muhlestein und D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42043.
Der volle Inhalt der QuellePurasinghe, Rupasiri. Experimental determination of post-buckling performance of steel angles. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.3156.
Der volle Inhalt der QuelleRadhakrishnan, Perumal. Post-buckled performance of partially restrained and intermediately supported steel angles. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.5493.
Der volle Inhalt der QuelleMao, Xiao-Yong, Li-Ren Zhou und Zhen Zhang. EXPERIMENTAL STUDY AND THEORETIC ANALYSIS ON FIRE RESISTANCE OF ANGLE STEEL STRENGTHENED REINFORCED CONCRETE COLUMNS. The Hong Kong Institute of Steel Construction, Dezember 2018. http://dx.doi.org/10.18057/icass2018.p.099.
Der volle Inhalt der QuelleGilsinn, David E., und W. Tyler Estler. An algorithm to position the NISIT Advanced Automated Master Angle Calibration System (AAMACS) to the least angular step. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4878.
Der volle Inhalt der QuelleMannucci und Demofonti. L51882 Mill Test Techniques for Predicting Crack Arrest Ability in High Toughness Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2002. http://dx.doi.org/10.55274/r0011210.
Der volle Inhalt der QuelleThieberger, P., A. Hanson, D. Steski, V. Zajic, S. Zhang und H. Ludewig. Secondary Electron Yields and Their Dependence on the Angle of Incidence on Stainless Steel Surfaces for Three Energetic Ion Beams. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/1157242.
Der volle Inhalt der QuelleTehrani, Fariborz M., Kenneth L. Fishman und Farmehr M. Dehkordi. Extending the Service-Life of Bridges using Sustainable and Resilient Abutment Systems: An Experimental Approach to Electrochemical Characterization of Lightweight Mechanically Stabilized Earth. Mineta Transportation Institute, Juli 2023. http://dx.doi.org/10.31979/mti.2023.2225.
Der volle Inhalt der QuelleRahman, Shahedur, Rodrigo Salgado, Monica Prezzi und Peter J. Becker. Improvement of Stiffness and Strength of Backfill Soils Through Optimization of Compaction Procedures and Specifications. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317134.
Der volle Inhalt der QuelleRosse, Anine. Stream channel monitoring for Wind Cave National Park 2021 Data report. National Park Service, Januar 2023. http://dx.doi.org/10.36967/2296623.
Der volle Inhalt der Quelle