Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „STRESS ANALYSIS OF RAIL WHEEL“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "STRESS ANALYSIS OF RAIL WHEEL" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "STRESS ANALYSIS OF RAIL WHEEL"
Zhang, Tie, Jun Zhang und Chuan Xi Sun. „The Profile Analysis of Wheels and Rails of Different Wear Stages for Heavy-Haul Wagons“. Applied Mechanics and Materials 602-605 (August 2014): 291–94. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.291.
Der volle Inhalt der QuelleMa, He, Jun Zhang und Xiu Juan Zhang. „The Calculation and Analysis for the Independent Wheels of Tramcar“. Applied Mechanics and Materials 577 (Juli 2014): 297–300. http://dx.doi.org/10.4028/www.scientific.net/amm.577.297.
Der volle Inhalt der QuelleMilošević, Miloš, Aleksandar Miltenović, Milan Banić und Miša Tomić. „DETERMINATION OF RESIDUAL STRESS IN THE RAIL WHEEL DURING QUENCHING PROCESS BY FEM SIMULATION“. Facta Universitatis, Series: Mechanical Engineering 15, Nr. 3 (09.12.2017): 413. http://dx.doi.org/10.22190/fume170206029m.
Der volle Inhalt der QuelleLiu, Kai, und Lin Jing. „A finite element analysis-based study on the dynamic wheel–rail contact behaviour caused by wheel polygonization“. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 234, Nr. 10 (04.12.2019): 1285–98. http://dx.doi.org/10.1177/0954409719891549.
Der volle Inhalt der QuelleKumar, S., und S. P. Singh. „Rail Head Geometry, Rail Rolling and Wheel-Rail Contact Tilting Analysis for Heavy Axle Loads“. Journal of Engineering for Industry 111, Nr. 4 (01.11.1989): 375–81. http://dx.doi.org/10.1115/1.3188775.
Der volle Inhalt der QuelleKumar, S., und S. P. Singh. „Heavy Axle Load Wheel-Rail Contact Stresses and Their Tread-Crown Curvature Relationships“. Journal of Engineering for Industry 111, Nr. 4 (01.11.1989): 382–87. http://dx.doi.org/10.1115/1.3188776.
Der volle Inhalt der QuelleAxinte, Tiberiu. „Analysis of Rails of a Ferry Boat under Wheels Contact Loading“. Advanced Materials Research 837 (November 2013): 739–44. http://dx.doi.org/10.4028/www.scientific.net/amr.837.739.
Der volle Inhalt der QuelleGu, Shao Jie, Xin Wen Yang und Song Liang Lian. „An Analysis of 3-D Wheel-Rail Contact Stress under Heavy Axle Load Using Non-Linear Finite Element Method“. Applied Mechanics and Materials 638-640 (September 2014): 1128–34. http://dx.doi.org/10.4028/www.scientific.net/amm.638-640.1128.
Der volle Inhalt der QuelleAkeel, N. A., M. A. Aziman, Zainuddin Sajuri, Ahmad Kamal Ariffin und A. W. Ikhsan. „Identification of Damages and Stress Analysis of Rail/Wheel Rolling Contact Region“. Key Engineering Materials 462-463 (Januar 2011): 1152–57. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.1152.
Der volle Inhalt der QuelleWu, Feng Qi, Jin Zhang und Wen Qing Yao. „Crane Wheel-Rail Contact Stresses Research Based on Experimental Test and Finite Element Analysis“. Applied Mechanics and Materials 496-500 (Januar 2014): 662–65. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.662.
Der volle Inhalt der QuelleDissertationen zum Thema "STRESS ANALYSIS OF RAIL WHEEL"
Bian, Jian. „Ultimate flexural limit states analysis of prestressed concrete sleeper“. Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/63660/1/Jian_Bian_Thesis.pdf.
Der volle Inhalt der QuelleTelliskivi, Tanel. „Wheel-rail Interaction Analysis“. Doctoral thesis, KTH, Machine Design, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3532.
Der volle Inhalt der QuelleA general approach to numerically simulating wear in rollingand sliding contacts is presented in this thesis. A simulationscheme is developed that calculates the wear at a detailedlevel. The removal of material follows Archards wear law,which states that the reduction of volume is linearlyproportional to the sliding distance, the normal load and thewear coefficient. The target application is the wheel-railcontact.
Careful attention is paid to stress properties in the normaldirection of the contact. A Winkler method is used to calculatethe normal pressure. The model is calibrated either withresults from Finite Element simulations (which can include aplastic material model) or a linear-elastic contact model. Thetangential tractions and the sliding distances are calculatedusing a method that incorporates the effect of rigid bodymotion and tangential deformations in the contact zone.Kalkers Fastsim code is used to validate the tangentialcalculation method. Results of three different sorts ofexperiments (full-scale, pin-on-disc and disc-on-disc) wereused to establish the wear and friction coefficients underdifferent operating conditions.
The experimental results show that the sliding velocity andcontact pressure in the contact situation strongly influencethe wear coefficient. For the disc-on-disc simulation, therewas good agreement between experimental results and thesimulation in terms of wear and rolling friction underdifferent operating conditions. Good agreement was alsoobtained in regard to form change of the rollers. In thefull-scale simulations, a two-point contact was analysed wherethe differences between the contacts on rail-head to wheeltread and rail edge to wheel flange can be attributed primarilyto the relative velocity differences in regard to bothmagnitude and direction. Good qualitative agreement was foundbetween the simulated wear rate and the full-scale test resultsat different contact conditions.
Keywords:railway rail, disc-on-disc, pin-on-disc,Archard, wear simulation, Winkler, rolling, sliding
Zhan, Yun, und 詹云. „Finite element analysis of vibration excited by rail-wheel interaction“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208053.
Der volle Inhalt der QuelleBOZZONE, MICHELANGELO. „Dynamic analysis of railway systems using computationally efficient wheel-rail contact models“. Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1332.
Der volle Inhalt der QuelleThe present thesis describes an investigation on the railway system motion like a wheel-set, a bogie or a wagon. Through the search of equilibrium configurations, the positions of contact points between rails and wheels are first located. The detection methods allow also the definition of the normal vectors to rail and wheel surfaces and the principal curvatures at contact points. To reduce computing time the results are stored in a lookup table that can be used for dynamic analysis of wheel-sets, bogie or wagon. A dynamic analysis has been performed on a bogie composed of two wheel-sets and a frame. The bogie frame is joined to the wheel-sets by means of a primary suspension system, acting on the three principal directions, i.e. longitudinal, transverse and vertical. The bogie moves along rails following its variable path. In particular, the dynamic analysis investigates the bogie behaviour in both straight and curved paths, with or without an initial perturbation and a super-elevation angle. Imposing an initial transverse disturbance, the hunting motion is observed and the critical speed value estimated. The contact characteristics have been determined by means of the lookup table. In order to minimize cpu-time, a new method for the interpolation of the lookup table entries has been developed. Finally, two different methods for the integration of the differential equations have been tested and comparisons with the results obtained by Simpack-rail multibody software are discussed. The railway systems have been analyzed in proximity of their critical conditions both in straight and curved tracks. The critical speed is estimated through the rise up of hunting motion. The critical speed, the contact forces in the critical conditions and the derailment limits are determined under different load conditions and track paths; two methods are used for its determination. The influence of the longitudinal suspension stiffness of the primary and secondary suspension systems on the critical conditions of the bogie and wagon are deduced for straight and curved track type.
Rinaldi, Elisa. „3D Finite Element Analysis of Wheel/Rail normal contact problem using ANSYS software“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Den vollen Inhalt der Quelle findenWhite, Ben. „Using tribo-chemistry analysis to understand low adhesion in the wheel-rail contact“. Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/21007/.
Der volle Inhalt der QuelleDareeju, Biyanvilage. „Performance evaluation of unsaturated rail track foundations under cyclic moving wheel load“. Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/102697/4/Biyanvilage%2520Sampath%2520Sri%2520Sameera_Dareeju_Thesis.pdf.
Der volle Inhalt der QuelleLee, Hyunwook. „A Polynomial Chaos Approach for Stochastic Modeling of Dynamic Wheel-Rail Friction“. Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/77195.
Der volle Inhalt der QuellePh. D.
Zong, Nannan. „Development of optimal designs of insulated rail joints“. Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/61125/1/Nannan_Zong_Thesis.pdf.
Der volle Inhalt der QuelleHopkins, Brad Michael. „A Wavelet-Based Rail Surface Defect Prediction and Detection Algorithm“. Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77351.
Der volle Inhalt der QuellePh. D.
Buchteile zum Thema "STRESS ANALYSIS OF RAIL WHEEL"
Guerrieri, Marco. „Wheel-Rail Interaction and Derailment Analysis“. In Springer Tracts in Civil Engineering, 79–87. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-24030-0_4.
Der volle Inhalt der QuelleBogacz, R. „On residual stresses in corrugated rails and wheel/rail interaction“. In Residual Stress in Rails, 87–100. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1787-6_5.
Der volle Inhalt der QuelleKalousek, J. „Experimental Tribo-Analysis of Rail/Wheel Interface“. In Rail Quality and Maintenance for Modern Railway Operation, 225–38. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8151-6_18.
Der volle Inhalt der QuelleTrue, Hans. „Dynamics of Railway Vehicles and Rail/Wheel Contact“. In Dynamical Analysis of Vehicle Systems, 75–128. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-76666-8_2.
Der volle Inhalt der QuelleBower, A. F., und K. L. Johnson. „Shakedown, Residual Stress and Plastic Flow in Repeated Wheel-Rail Contact“. In Rail Quality and Maintenance for Modern Railway Operation, 239–49. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8151-6_19.
Der volle Inhalt der QuelleWild, Eric, und Walter Reimers. „Residual Stress and Microstructure in the Rail/Wheel Contact Zone of a Worn Railway Wheel“. In Materials Science Forum, 911–16. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-414-6.911.
Der volle Inhalt der QuelleSehitoglu, Huseyin, und Y. Roger Jiang. „Residual Stress Analysis in Rolling Contact“. In Rail Quality and Maintenance for Modern Railway Operation, 349–58. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8151-6_28.
Der volle Inhalt der QuelleDecroos, Kris, Jonathan Ceulemans, Bert Stallaert und Tom Vanhonacker. „Wheel-Rail Contact Analysis with Emphasis on Wear (Measurements/Simulation)“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 259–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70289-2_26.
Der volle Inhalt der QuelleOlzak, Mirosław, Jacek Stupnicki und Ryszard Wójcik. „Numerical Analysis of 3D Cracks Propagating in the Rail-Wheel Contact Zone“. In Rail Quality and Maintenance for Modern Railway Operation, 385–95. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8151-6_31.
Der volle Inhalt der QuelleRonasi, Hamed, Håkan Johansson und Fredrik Larsson. „Identification of Wheel-Rail Contact Forces Based on Strain Measurement and Finite Element Model of the Rolling Wheel“. In Topics in Modal Analysis II, Volume 6, 169–77. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2419-2_15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "STRESS ANALYSIS OF RAIL WHEEL"
Euston, Todd L., Allan M. Zarembski, Christopher M. Hartsough und Joseph W. Palese. „Analysis of Wheel-Rail Contact Stresses Through a Turnout“. In 2012 Joint Rail Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/jrc2012-74004.
Der volle Inhalt der QuelleSura, Venkata S., und Sankaran Mahadevan. „Estimation of Residual Stress Distribution in Railroad Wheels“. In 2009 Joint Rail Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/jrc2009-63011.
Der volle Inhalt der QuelleStone, Daniel H., und Scott M. Cummings. „Effect of Residual Stress, Temperature and Adhesion on Wheel Surface Fatigue Cracking“. In ASME 2008 Rail Transportation Division Fall Technical Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/rtdf2008-74029.
Der volle Inhalt der QuelleGalbraith, Jay, George Ames und Scott Leister. „Consistent and Repeatable Property and Residual Stress Control in Forged and Heat Treated Railway Wheels“. In 2011 Joint Rail Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/jrc2011-56089.
Der volle Inhalt der QuelleLonsdale, Cameron, Thomas Rusin und Thomas Hay. „Research to Understand the Effects of Wheel Impact Loads on Wheel Stress Levels“. In 2009 Joint Rail Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/jrc2009-63026.
Der volle Inhalt der QuelleSura, Venkata S., und Sankaran Mahadevan. „Vertical Split Rim Failure Analysis in Railroad Wheels“. In 2010 Joint Rail Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/jrc2010-36024.
Der volle Inhalt der QuelleJimin, Zhang, Wan Jingyuan, Li Wen, Zhong Xujie, Zhou Hechao, Qi Yuan und Hou Chuanlun. „Research on Simulation of Resilient Wheel Dynamometer“. In 2020 Joint Rail Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/jrc2020-8069.
Der volle Inhalt der QuelleJin, Xuesong, Jun Guo, Xinbiao Xiao und Zefeng Wen. „An Investigation Into Effect of Train Curving on Wear and Contact Stresses of Wheel and Rail“. In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59373.
Der volle Inhalt der QuelleBa˘rbiˆnt¸a˘, Constantin I., Sulleyman Yaldiz, Alina Dragomir und Spiridon S. Cret¸u. „An Elastic-Plastic Solver of the Wheel-Rail Contact“. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24793.
Der volle Inhalt der QuelleStewart, Monique F., Som P. Singh, David R. Andersen, Rou Wen und Graydon F. Booth. „Wheel Temperature Reduction During Freight Car Braking“. In 2016 Joint Rail Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/jrc2016-5819.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "STRESS ANALYSIS OF RAIL WHEEL"
Heymsfield, Ernie, und Jeb Tingle. State of the practice in pavement structural design/analysis codes relevant to airfield pavement design. Engineer Research and Development Center (U.S.), Mai 2021. http://dx.doi.org/10.21079/11681/40542.
Der volle Inhalt der Quelle