Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Structural analysis of the piston“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Structural analysis of the piston" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Structural analysis of the piston"
Lalvani, J. Isaac Joshua Ramesh, E. Prakash, M. Parthasarathy, S. Jayaraj und K. Annamalai. „Structural Analysis on Swirling Grooved SCC Piston“. Advanced Materials Research 984-985 (Juli 2014): 452–55. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.452.
Der volle Inhalt der QuelleHigashimachi, Takao, Takahide Nakayama, Takenori Hirakawa und Hisato Sasahara. „Structural Analysis of a Universal Holding Mechanism for Piston Rings“. Journal of Robotics and Mechatronics 13, Nr. 3 (20.06.2001): 245–53. http://dx.doi.org/10.20965/jrm.2001.p0245.
Der volle Inhalt der QuelleTandon, Adhir. „Design, Optimization and Analysis of a 4-stroke Diesel Engine Piston and Piston rings using Different Materials“. SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 10, Nr. 01 (25.07.2018): 71–80. http://dx.doi.org/10.18090/samriddhi.v10i01.10.
Der volle Inhalt der QuelleKumar, Chandan, und Nilamber Kumar Singh. „Responses of Aluminium Alloy Pistons under Mechanical and Thermal Loads“. Materials Science Forum 969 (August 2019): 231–36. http://dx.doi.org/10.4028/www.scientific.net/msf.969.231.
Der volle Inhalt der QuelleXie, Qiang, Cun Yun Pan, Hu Chen, Zheng Zhou Zhang und Lei Zhang. „Structural Modal Analysis of a New Twin-Rotor Piston Engine“. Applied Mechanics and Materials 390 (August 2013): 256–60. http://dx.doi.org/10.4028/www.scientific.net/amm.390.256.
Der volle Inhalt der QuelleFolęga, Piotr, Rafał Burdzik und Łukasz Konieczny. „State of Stress Analysis for Structural Solutions of Combustion Engine Piston Pins“. Solid State Phenomena 236 (Juli 2015): 70–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.236.70.
Der volle Inhalt der QuelleWang, Yan Xia, und Hui Gao. „Fatigue Strength& Analysis of Diesel Engine Piston on Finite Element Analysis“. Advanced Materials Research 156-157 (Oktober 2010): 1086–89. http://dx.doi.org/10.4028/www.scientific.net/amr.156-157.1086.
Der volle Inhalt der QuelleTian, Jingyi, Huihua Feng, Yuanjie Feng, Zhengwei Yang, Chengjun Zhu und Jiegui Li. „Piston dynamics analysis considering skirt-liner dynamic clearance“. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, Nr. 13 (08.02.2019): 3538–53. http://dx.doi.org/10.1177/0954407019827339.
Der volle Inhalt der QuelleHao, Ming, und Xiao Ye Qi. „Modeling Analysis and Simulation of Hydraulic Axial Piston Pump“. Advanced Materials Research 430-432 (Januar 2012): 1532–35. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.1532.
Der volle Inhalt der QuelleGao, Sheng Yao, De Shi Wang und Qi Zheng Zhou. „Finite Element Analysis of the Thermal Field of Piston in an External Combustion Cam Engine“. Applied Mechanics and Materials 66-68 (Juli 2011): 1240–44. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1240.
Der volle Inhalt der QuelleDissertationen zum Thema "Structural analysis of the piston"
Aran, Gokhan. „Aerothermodynamic Analysis And Design Of A Rolling Piston Engine“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608449/index.pdf.
Der volle Inhalt der QuelleZalibera, Tomáš. „Výpočetní analýza provozních deformací válcové jednotky vznětového motoru“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417726.
Der volle Inhalt der QuelleZelko, Lukáš. „Píst zážehového motoru pro 3-D tisk“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400468.
Der volle Inhalt der QuelleValtrová, Martina. „Píst zážehového motoru vyráběný aditivní technologií“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-449789.
Der volle Inhalt der QuelleCastillo, Moscoso Samantha Jessie, und Hernandez Jesus Humberto Flores. „Análisis de la interacción entre estructuras adyacentes de concreto armado de 5 y 12 pisos sin una adecuada junta de separación sísmica en la ciudad de Lima“. Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2019. http://hdl.handle.net/10757/628036.
Der volle Inhalt der QuelleThe main priority for a civil engineer is to provide security to citizens in any buildings and/or constructions he makes, this security always has to be linked to obtain the appropriate infrastructure at reasonable cost. In our country, construction projects specially buildings that are our case of study, could have many causes of failures during an earthquake, among them —and the one we will focus on— is the failure occurred by the contact between neighbor structures during a seismic activity. We consider the rapid increase of buildings for residential use and the yet existing informality in construction have been one of the reasons for generating constructed adjoining buildings without an appropriate seismic separation joints in Peru, in spite of the indications in the building code. Considering that the country is situated in a highly seismically unstable area, these buildings might be severely damaged during a seismic activity. For that reason, we want to discover and analyse the effect in the adjoining reinforced concrete structures of seismic separation joints below regulation, determining the impact force produced by the beating phenomenon between structures (pounding). The information that is going to be obtained is considered to be relevant, due to the lack of researches about this phenomenon in Spanish in our country. Once determined the impact force between structures, possible solutions that we consider might help attenuate the problem will be outlined.
Tesis
Oliveros, Andrade Edgard Andrés, und Guillén Dayan Tapahuasco. „Influencia del concreto liviano en el desempeño sísmico de una vivienda multifamiliar de 10 pisos ubicada en Lima“. Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2019. http://hdl.handle.net/10757/628219.
Der volle Inhalt der QuelleThe present investigation contemplates the design of 2 structures of 10 floors, one made of conventional concrete and another of a lightweight concrete of expanded clay, it is worth mentioning that for the design and analysis of the structure of light concrete, criteria of the ACI 213R have been considered for subsequently be verified with Peruvian regulations (E030 and E060); However, to analyze a building made with a material that has not been used with a resistant earthquake objective in our nation, needs to be evaluated with a more precise method than the linear analysis stipulated in our E030 regulations. For this case, the seismic evaluation method is based on the performance design that contemplates a non-linear static analysis, which allows us to see in greater detail the differences in the structural behavior of both buildings after overcoming their linear state. The objective of evaluating both structures is to demonstrate the influence of the use of lightweight concrete in structural design, non-linear behavior, seismic performance and costs in comparison to a conventional concrete structure. After the evaluation for seismic performance, it was determined that, for this specific case, conventional and light concrete buildings do not meet all the performance objectives set for a multi-family home; however, the lightweight concrete structure has a better dynamic response compared to the conventional structure due to its main property, that of presenting a lower weight, which resulted in pseudo-acceleration values greater than that of the conventional concrete structure. Finally, a cost comparison is made, where there was not much savings when using a lightweight concrete, but that this result could be optimized if conventional and lightweight concrete is used mixed in a building, taking into account that the lightweight concrete does It can be used in structural elements that resist seismic forces.
Tesis
Kumar, Sushil. „CFD Analysis of an axial piston pump“. Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/21794.
Der volle Inhalt der QuelleIn the field of Fluid Power, piston pumps possess the most sophisticated designs, in fact, pistons pumps are the only ones capable of working at high pressures, besides possessing the best performance (efficiency) of the entire group of existing pumps. However, it is noted that all the designs of piston pumps, are mostly based on the experience of the designers, thus there exist no mathematical tools for optimizing the design of the different parts of the pumps. On the other hand, there are now companies like Oilgear Towler, who inserted slots (grooves) in the slippers and in the pistons, (two major parts of these pumps) but there is no scientific study to analyze its advantages or disadvantages. There is therefore a need to understand mathematically to study the advantages and disadvantages due to the presence of the groove on the surface of different pump parts. There are four sliding surfaces in the piston pump, Slipper-swash plate gap, Barrel-valve plate gap, Piston-barrel chamber gap and Spherical bearing, where lubrication exists and leakages through these channels occur. In this project, our aim is to analyze each of these different sliding surfaces separately to understand its design constrains and the effect of the design parameters on the pump behavior. After having a better understanding of all the different parts of the piston pump, the aim is to model the dynamic behavior of pressure and flow at the outlet of the pump. Slipper plate gap - To understand static and dynamic characteristics of a piston pump slipper with a groove. Three dimensional Navier Stokes equations in cylindrical coordinates have been applied to the slipper/plate gap, including the groove. The results presented in this thesis include, pressure distribution, leakage, force and torque variations when groove dimensions and position are being modified, the effect of slipper tangential velocity and turning speed are also considered. Design instructions to optimize slipper/groove performance are also given. Barrel-valve plate gap - Present thesis, analyses the pressure distribution, leakage, force and torque between the barrel and the port plate of an axial piston pump by simulating Reynolds equations of lubrication by FDM (finite difference method). The overall mean force and torques over the barrel are evaluated from simulated pressure and it shows that the torque over the XX axis is much smaller than the torque over the YY axis. A detailed dynamic analysis is then studied by using the temporal torque calculated by Bergada. Piston-barrel chamber gap - It is being investigated the piston performance by modifying the number of grooves and their position, pressure distribution in the clearance piston-cylinder, leakage force and torque acting over the piston will be discussed, also the locations where cavitation is likely to appear will be presented, discussing how to prevent cavitation from appearing via using grooves. A finite volume based Reynolds equation model has been formulated for the piston-cylinder clearance which considers the piston eccentricity and the relative tangential movement between piston and barrel. Different configurations of the grooves have been evaluated in search of finding minimum leakage, minimum appearance of cavitation and maximum restoring torque. Design instructions to optimize the piston behavior are also given. Full pump Model - An extensive set of explicit equations for every pump gap will be presented. All of the equations will be checked via performing a numerical analysis of the specified pump clearance, the equations will then be combined to study dynamically pressure ripple and leakages. The effect on the flow ripple when modifying the pump design will also be presented. Therefore in present thesis, a simulation model based on analytical equations has been developed which produce very fast results and clarify very precisely the effect of different leakages happened through the pump clearances.
Ulusoy, Necati. „Dynamic analysis of free piston Stirling engines“. Case Western Reserve University School of Graduate Studies / OhioLINK, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=case1061217408.
Der volle Inhalt der QuelleKodakoglu, Furkan. „Performance analysis on Free-piston linear expander“. UNF Digital Commons, 2017. http://digitalcommons.unf.edu/etd/766.
Der volle Inhalt der QuelleDeutsch, Eric J. (Eric Joseph). „Piston ring friction analysis from oil film thickness measurements“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/36435.
Der volle Inhalt der QuelleBücher zum Thema "Structural analysis of the piston"
Structural Analysis. 4. Aufl. Stamford, CT: Cengage Learning, 2010.
Den vollen Inhalt der Quelle findenCamilleri, Matthew L. Structural analysis. Herausgegeben von ebrary Inc. New York: Nova Science Publishers, Inc., 2010.
Den vollen Inhalt der Quelle findenC, Smith J. Structural analysis. New York: Harper & Row, 1988.
Den vollen Inhalt der Quelle findenHibbeler, R. C. Structural analysis. 2. Aufl. New York: Macmillan, 1990.
Den vollen Inhalt der Quelle findenStructural analysis. 2. Aufl. Englewood Cliffs: Prentice-Hall, 1990.
Den vollen Inhalt der Quelle findenHibbeler, R. C. Structural analysis. 7. Aufl. Upper Saddle River, N.J: Pearson/Prentice Hall, 2009.
Den vollen Inhalt der Quelle findenHibbeler, R. C. Structural analysis. 5. Aufl. Upper Saddler River, N.J: Prentice Hall, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Structural analysis of the piston"
Premkumar, I. J. Isaac, A. Prabu, V. Vijayan und S. Dinesh. „An Investigation on Piston Structural Analysis Related with Experimental Cylinder Pressures Using Different Biodiesel Blend Ratios“. In Lecture Notes in Mechanical Engineering, 929–44. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4739-3_81.
Der volle Inhalt der QuelleBiałek, Paweł, und Piotr Bielawski. „Failure Analysis of Hydrogen Piston Compressors“. In Applied Condition Monitoring, 69–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62042-8_6.
Der volle Inhalt der QuelleYang, Z. „Structural Analysis“. In Multiphysics Modeling with Application to Biomedical Engineering, 7–18. Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367510800-3.
Der volle Inhalt der QuelleZatarain, Mikel. „Structural Analysis“. In CIRP Encyclopedia of Production Engineering, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_6543-4.
Der volle Inhalt der Quelleda Silva, Luís Simões, Rui Simões und Helena Gervásio. „Structural Analysis“. In Design of Steel Structures, 33–114. D-69451 Weinheim, Germany: Wiley-VCH Verlag GmbH, 2014. http://dx.doi.org/10.1002/9783433604229.ch2.
Der volle Inhalt der Quelleda Silva, Luís Simões, Rui Simões, Helena Gervásio und Graham Couchman. „Structural Analysis“. In Design of Steel Structures, 35–116. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783433606483.ch2.
Der volle Inhalt der QuelleFrank, Robert. „Structural Analysis“. In A Companion to Cognitive Science, 450–62. Oxford, UK: Blackwell Publishing Ltd, 2017. http://dx.doi.org/10.1002/9781405164535.ch35.
Der volle Inhalt der QuelleZatarain, Mikel. „Structural Analysis“. In CIRP Encyclopedia of Production Engineering, 1165–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-20617-7_6543.
Der volle Inhalt der QuelleJohansson, Mikael. „Structural Analysis“. In Piecewise Linear Control Systems, 32–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36801-9_3.
Der volle Inhalt der QuelleZatarain, Mikel. „Structural Analysis“. In CIRP Encyclopedia of Production Engineering, 1629–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53120-4_6543.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Structural analysis of the piston"
Bhuyan, Dheeman, und Kaushik Kumar. „Static structural analysis of piston valve of twin tube dampers“. In 2017 2nd International Conference for Convergence in Technology (I2CT). IEEE, 2017. http://dx.doi.org/10.1109/i2ct.2017.8226085.
Der volle Inhalt der QuelleKumar, K. Santosh, Balram Yelamasetti, Vishnu Vardhan und M. D. Raheem. „Design and structural analysis of V8 engine piston by using different materials“. In SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0058665.
Der volle Inhalt der QuelleAvila Aguilar, José Manuel, Raul Lesso Arroyo und Jorge Martínez Cruz. „Study of the Thermal-Structural Behavior of a Piston Diesel With Gallery Through Finite Element Method“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-93372.
Der volle Inhalt der QuelleZhao, Jie, Farong Du und Wei Yao. „Structure Analysis and Topology Optimization of a Bent-Bar-Frame Piston Based on the Variable Density Approach“. In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6118.
Der volle Inhalt der QuelleMeng, Xianghui, und Youbai Xie. „System Parameters Identifying and Performance Predicting of ICEs Combining Multidisciplinary Model With System Responding Data“. In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59384.
Der volle Inhalt der QuellePriebsch, Hans H., Hubert M. Herbst und Günter Offner. „Piston Slap Induced Noise Simulation Considering Elasto-Hydrodynamic Contact Conditions“. In ASME 2001 Internal Combustion Engine Division Spring Technical Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/ices2001-129.
Der volle Inhalt der QuelleYin, Shih-Hsun, und Bogdan I. Epureanu. „Structural Health Monitoring of a Nonlinear Aeroelastic System Based on Attractor Analysis“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60998.
Der volle Inhalt der QuelleSarode, Shanmukh, und Lizhi Shang. „Novel Pressure Adaptive Piston Cylinder Interface Design for Axial Piston Machines“. In ASME/BATH 2019 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/fpmc2019-1645.
Der volle Inhalt der QuelleDekany, Richard G., Michael Lloyd-Hart, David G. Sandler und James Roger P. Angel. „Noise analysis of interferometric piston phasing for adaptive optics with dilute pupil telescopes“. In 1993 North American Conference on Smart Structures and Materials, herausgegeben von Mark A. Ealey. SPIE, 1993. http://dx.doi.org/10.1117/12.152672.
Der volle Inhalt der QuelleHao, Guangbo. „Design and Analysis of Symmetrical, Monolithic Tip-Tilt-Piston Flexure Stages“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67270.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Structural analysis of the piston"
Klote, John H. An analysis of the influence of piston effect on elevator smoke control. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.ir.88-3751.
Der volle Inhalt der QuelleNguyen, P. M. Sodium loop framework structural analysis. Office of Scientific and Technical Information (OSTI), Juni 1995. http://dx.doi.org/10.2172/96909.
Der volle Inhalt der QuelleWestern, J. D-Zero Cryobridge Structural Analysis. Office of Scientific and Technical Information (OSTI), Februar 1990. http://dx.doi.org/10.2172/1031853.
Der volle Inhalt der QuelleCampbell, D. C., K. A. Jenner, J. Higgins und D. J. W. Piper. Analysis of piston cores and high-resolution sub-bottom profiler data, Baffin Bay slope, Nunavut. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/300835.
Der volle Inhalt der QuelleLakhina, Anukool, Konstantina Papagiannaki, Mark Crovella, Christophe Diot, Eric D. Kolaczyk und Nina Taft. Structural Analysis of Network Traffic Flows. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada439086.
Der volle Inhalt der QuelleMisiak, T. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS. Office of Scientific and Technical Information (OSTI), Juni 1996. http://dx.doi.org/10.2172/891529.
Der volle Inhalt der QuelleZarghamee, Mehdi, Atis A. Iiepins, Said Bolourchi, Michael Mudlock, Daniel W. Eggers, Wassim I. Naguib, Omer O. Erbay et al. Component, connection and subsystem structural analysis. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ncstar.1-6c.
Der volle Inhalt der QuelleGali, Jordi, und Mark Gertler. Inflation Dynamics: A Structural Econometric Analysis. Cambridge, MA: National Bureau of Economic Research, Februar 2000. http://dx.doi.org/10.3386/w7551.
Der volle Inhalt der QuelleKosny, Jan, und X. Sharon Huo. Structural Analysis of Sandwich Foam Panels. Office of Scientific and Technical Information (OSTI), April 2010. http://dx.doi.org/10.2172/979348.
Der volle Inhalt der QuelleT. Misiak. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS. Office of Scientific and Technical Information (OSTI), Juni 1996. http://dx.doi.org/10.2172/862353.
Der volle Inhalt der Quelle