Zeitschriftenartikel zum Thema „SUPERVISED TECHNOLOGY“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "SUPERVISED TECHNOLOGY" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Zohuri, Bahman. „The Evolution of Artificial Intelligence: From Supervised to Semi-Supervised and Ultimately Unsupervised Technology Trends“. Current Trends in Engineering Science (CTES) 3, Nr. 5 (22.08.2023): 1–4. http://dx.doi.org/10.54026/ctes/1040.
Der volle Inhalt der QuelleSun, Tong He, und Guo Qing Yan. „Land Utilization and Classification Method Based on Remote Sensing Technology“. Applied Mechanics and Materials 239-240 (Dezember 2012): 501–6. http://dx.doi.org/10.4028/www.scientific.net/amm.239-240.501.
Der volle Inhalt der QuelleAbdullah, Khalid Murad, Bahaulddin Nabhan Adday, Refed Adnan Jaleel, Iman Mohammed Burhan, Mohanad Ahmed Salih und Musaddak Maher Abdul Zahra. „Integrating of Promising Computer Network Technology with Intelligent Supervised Machine Learning for Better Performance“. Webology 19, Nr. 1 (20.01.2022): 3792–99. http://dx.doi.org/10.14704/web/v19i1/web19249.
Der volle Inhalt der QuelleD M, Yashaswini. „Detection of Fake Online Reviews using Semi-supervised and Supervised learning“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 7 (31.07.2022): 789–96. http://dx.doi.org/10.22214/ijraset.2022.44368.
Der volle Inhalt der QuelleChoi, Sungchul, Mokhammad Afifuddin und Wonchul Seo. „A Supervised Learning-Based Approach to Anticipating Potential Technology Convergence“. IEEE Access 10 (2022): 19284–300. http://dx.doi.org/10.1109/access.2022.3151870.
Der volle Inhalt der QuelleAli, MD Mohsin, S. Vamshi, S. Shiva und S. Bhanu Prakash. „Virtual Assistant Using Supervised Learning“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 6 (30.06.2023): 3239–45. http://dx.doi.org/10.22214/ijraset.2023.54262.
Der volle Inhalt der QuelleWang, Xiujuan, Siwei Cao, Kangfeng Zheng, Xu Guo und Yutong Shi. „Supervised Character Resemble Substitution Personality Adversarial Method“. Electronics 12, Nr. 4 (08.02.2023): 869. http://dx.doi.org/10.3390/electronics12040869.
Der volle Inhalt der QuelleWang, Hanyun. „Comparing supervised and unsupervised learning in image denoising“. Applied and Computational Engineering 5, Nr. 1 (14.06.2023): 284–91. http://dx.doi.org/10.54254/2755-2721/5/20230581.
Der volle Inhalt der QuelleChettri, Ajanta, Amal George, Dr A. Rengarajan und Feon Jaison. „Research Paper on Fake Online Reviews Detection using Semi-supervised and Supervised learning“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 4 (30.04.2022): 1973–79. http://dx.doi.org/10.22214/ijraset.2022.41687.
Der volle Inhalt der QuelleChettri, Ajanta, Amal George, Dr A. Rengarajan und Feon Jaison. „Research Paper on Fake Online Reviews Detection using Semi-supervised and Supervised learning“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 4 (30.04.2022): 1973–79. http://dx.doi.org/10.22214/ijraset.2022.41687.
Der volle Inhalt der QuelleQiu, Qingchen, Xuelian Wu, Zhi Liu, Bo Tang, Yuefeng Zhao, Xinyi Wu, Hongliang Zhu und Yang Xin. „Survey of supervised classification techniques for hyperspectral images“. Sensor Review 37, Nr. 3 (19.06.2017): 371–82. http://dx.doi.org/10.1108/sr-07-2016-0124.
Der volle Inhalt der QuelleKola, Lokesh. „A Comparison on Supervised and Semi-Supervised Machine Learning Classifiers for Gestational Diabetes Prediction“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. 12 (31.12.2021): 1001–5. http://dx.doi.org/10.22214/ijraset.2021.39434.
Der volle Inhalt der QuelleQiu, Dongwei, Haorong Liang, Zhilin Wang, Yuci Tong und Shanshan Wan. „Hybrid-Supervised-Learning-Based Automatic Image Segmentation for Water Leakage in Subway Tunnels“. Applied Sciences 12, Nr. 22 (20.11.2022): 11799. http://dx.doi.org/10.3390/app122211799.
Der volle Inhalt der QuelleAlZuhair, Mona Suliman, Mohamed Maher Ben Ismail und Ouiem Bchir. „Soft Semi-Supervised Deep Learning-Based Clustering“. Applied Sciences 13, Nr. 17 (27.08.2023): 9673. http://dx.doi.org/10.3390/app13179673.
Der volle Inhalt der QuelleSáiz-Manzanares, María Consuelo, Ismael Ramos Pérez, Adrián Arnaiz Rodríguez, Sandra Rodríguez Arribas, Leandro Almeida und Caroline Françoise Martin. „Analysis of the Learning Process through Eye Tracking Technology and Feature Selection Techniques“. Applied Sciences 11, Nr. 13 (02.07.2021): 6157. http://dx.doi.org/10.3390/app11136157.
Der volle Inhalt der QuelleHardy, Andy, Gregory Oakes, Juma Hassan und Yussuf Yussuf. „Improved Use of Drone Imagery for Malaria Vector Control through Technology-Assisted Digitizing (TAD)“. Remote Sensing 14, Nr. 2 (11.01.2022): 317. http://dx.doi.org/10.3390/rs14020317.
Der volle Inhalt der QuelleLiu, MengYang, MingJun Li und XiaoYang Zhang. „The Application of the Unsupervised Migration Method Based on Deep Learning Model in the Marketing Oriented Allocation of High Level Accounting Talents“. Computational Intelligence and Neuroscience 2022 (06.06.2022): 1–10. http://dx.doi.org/10.1155/2022/5653942.
Der volle Inhalt der QuelleLiu, MengYang, MingJun Li und XiaoYang Zhang. „The Application of the Unsupervised Migration Method Based on Deep Learning Model in the Marketing Oriented Allocation of High Level Accounting Talents“. Computational Intelligence and Neuroscience 2022 (06.06.2022): 1–10. http://dx.doi.org/10.1155/2022/5653942.
Der volle Inhalt der QuelleBorda, Davide, Mattia Bergagio, Massimo Amerio, Marco Carlo Masoero, Romano Borchiellini und Davide Papurello. „Development of Anomaly Detectors for HVAC Systems Using Machine Learning“. Processes 11, Nr. 2 (10.02.2023): 535. http://dx.doi.org/10.3390/pr11020535.
Der volle Inhalt der QuelleTong, Yuerong, Jingyi Liu, Lina Yu, Liping Zhang, Linjun Sun, Weijun Li, Xin Ning, Jian Xu, Hong Qin und Qiang Cai. „Technology investigation on time series classification and prediction“. PeerJ Computer Science 8 (18.05.2022): e982. http://dx.doi.org/10.7717/peerj-cs.982.
Der volle Inhalt der QuelleDhamelia, Hemin, und Riti Moradiya. „Unlocking Hidden Insights: Unleashing the Strength of Semi-Supervised Learning in Machine Learning“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 8 (31.08.2023): 2049–57. http://dx.doi.org/10.22214/ijraset.2023.55468.
Der volle Inhalt der QuelleSun, Tong He, und Guo Qing Yan. „Land Classification Method and Analysis Based on Remote Sensing Technology“. Advanced Materials Research 726-731 (August 2013): 4582–86. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.4582.
Der volle Inhalt der QuelleJiang, Yi, und Hui Sun. „Top-K Pseudo Labeling for Semi-Supervised Image Classification“. International Journal of Data Warehousing and Mining 19, Nr. 2 (30.12.2022): 1–18. http://dx.doi.org/10.4018/ijdwm.316150.
Der volle Inhalt der QuelleChen, Shouchun, Fei Wang, Yangqiu Song und Changshui Zhang. „Semi-supervised ranking aggregation“. Information Processing & Management 47, Nr. 3 (Mai 2011): 415–25. http://dx.doi.org/10.1016/j.ipm.2010.09.003.
Der volle Inhalt der QuelleSong, Yide. „Weakly-Supervised and Unsupervised Video Anomaly Detection“. Highlights in Science, Engineering and Technology 12 (26.08.2022): 160–70. http://dx.doi.org/10.54097/hset.v12i.1444.
Der volle Inhalt der QuelleWang, Jiahao, Junhao Zhao, Hong Sun, Xiao Lu, Jixia Huang, Shaohua Wang und Guofei Fang. „Satellite Remote Sensing Identification of Discolored Standing Trees for Pine Wilt Disease Based on Semi-Supervised Deep Learning“. Remote Sensing 14, Nr. 23 (23.11.2022): 5936. http://dx.doi.org/10.3390/rs14235936.
Der volle Inhalt der QuellePeterson, Carsten, Stephen Redfield, James D. Keeler und Eric Hartman. „An Optoelectronic Architecture for Multilayer Learning in a Single Photorefractive Crystal“. Neural Computation 2, Nr. 1 (März 1990): 25–34. http://dx.doi.org/10.1162/neco.1990.2.1.25.
Der volle Inhalt der QuelleHuang, Yanli. „Open Learning Environment for Multimodal Learning Based on Knowledge Base Technology“. International Journal of Emerging Technologies in Learning (iJET) 18, Nr. 11 (07.06.2023): 38–51. http://dx.doi.org/10.3991/ijet.v18i11.39397.
Der volle Inhalt der QuelleZhao, Jianhua, und Ning Liu. „Semi-supervised Classification Based Mixed Sampling for Imbalanced Data“. Open Physics 17, Nr. 1 (31.12.2019): 975–83. http://dx.doi.org/10.1515/phys-2019-0103.
Der volle Inhalt der QuelleSong, Xiao Na, Jun Zheng, Pei Li, Xiao Xia Hou, Jing Rong Zhang, Yan Ping Hu und Ning Gao. „Design of Intelligent Supervised System Based on Internet of Things“. Advanced Materials Research 816-817 (September 2013): 967–70. http://dx.doi.org/10.4028/www.scientific.net/amr.816-817.967.
Der volle Inhalt der QuelleZhang, Kun, Hai Feng Wang und Zhuang Li. „Based on IDRISI Remote Sensing Images Land-Use Types of Supervised Classification Techniques“. Applied Mechanics and Materials 415 (September 2013): 305–8. http://dx.doi.org/10.4028/www.scientific.net/amm.415.305.
Der volle Inhalt der QuelleNivelkar, Mukta, und S. G. Bhirud. „Modeling of Supervised Machine Learning using Mechanism of Quantum Computing.“ Journal of Physics: Conference Series 2161, Nr. 1 (01.01.2022): 012023. http://dx.doi.org/10.1088/1742-6596/2161/1/012023.
Der volle Inhalt der QuelleSchneider, Tizian, Steffen Klein und Andreas Schütze. „Machine learning in industrial measurement technology for detection of known and unknown faults of equipment and sensors“. tm - Technisches Messen 86, Nr. 11 (26.11.2019): 706–18. http://dx.doi.org/10.1515/teme-2019-0086.
Der volle Inhalt der QuelleWang, Cong, Wanshu Fan, Yutong Wu und Zhixun Su. „Weakly supervised single image dehazing“. Journal of Visual Communication and Image Representation 72 (Oktober 2020): 102897. http://dx.doi.org/10.1016/j.jvcir.2020.102897.
Der volle Inhalt der QuelleKong, Yating, Jide Li, Liangpeng Hu und Xiaoqiang Li. „Semi-Supervised Learning Matting Algorithm Based on Semantic Consistency of Trimaps“. Applied Sciences 13, Nr. 15 (26.07.2023): 8616. http://dx.doi.org/10.3390/app13158616.
Der volle Inhalt der QuelleZhao, Qingyu, Zixuan Liu, Ehsan Adeli und Kilian M. Pohl. „Longitudinal self-supervised learning“. Medical Image Analysis 71 (Juli 2021): 102051. http://dx.doi.org/10.1016/j.media.2021.102051.
Der volle Inhalt der QuelleHang, Feilu, Wei Guo, Hexiong Chen, Linjiang Xie, Xiaoyu Bai und Yao Liu. „Network Intrusion Anomaly Detection Model Based on Multiclassifier Fusion Technology“. Mobile Information Systems 2023 (08.04.2023): 1–11. http://dx.doi.org/10.1155/2023/1594622.
Der volle Inhalt der QuelleBordoloi, Monali, Preetam Chayan Chatterjee, Saroj Kumar Biswas und Biswajit Purkayastha. „Keyword extraction using supervised cumulative TextRank“. Multimedia Tools and Applications 79, Nr. 41-42 (21.08.2020): 31467–96. http://dx.doi.org/10.1007/s11042-020-09335-1.
Der volle Inhalt der QuelleShu, Xin, Haiyan Jiang und Huanliang Xu. „Graph regularized supervised cross-view hashing“. Multimedia Tools and Applications 77, Nr. 21 (27.04.2018): 28207–24. http://dx.doi.org/10.1007/s11042-018-5988-3.
Der volle Inhalt der QuelleYang, Haichuan, Xiao Bai, Yanzhen Liu, Yanyang Wang, Lu Bai, Jun Zhou und Wenzhong Tang. „Maximum margin hashing with supervised information“. Multimedia Tools and Applications 75, Nr. 7 (27.01.2016): 3955–71. http://dx.doi.org/10.1007/s11042-015-3159-3.
Der volle Inhalt der QuelleRam, Nikhil Chandra Sai, Gowtham Vakati, Jagadesh Varma Nadimpall, Yash Sah und Sai Karthik Datla. „Fake Reviews Detection Using Supervised Machine Learning“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 5 (31.05.2022): 3718–27. http://dx.doi.org/10.22214/ijraset.2022.43202.
Der volle Inhalt der QuelleShin, Sungho, Jongwon Kim, Yeonguk Yu, Seongju Lee und Kyoobin Lee. „Self-Supervised Transfer Learning from Natural Images for Sound Classification“. Applied Sciences 11, Nr. 7 (29.03.2021): 3043. http://dx.doi.org/10.3390/app11073043.
Der volle Inhalt der QuelleCaponi, Matteo, Adam Cox und Siddharth Misra. „Viscosity prediction using image processing and supervised learning“. Fuel 339 (Mai 2023): 127320. http://dx.doi.org/10.1016/j.fuel.2022.127320.
Der volle Inhalt der QuelleZhou, Ruixu, Wensheng Gao, Dengwei Ding und Weidong Liu. „Supervised dimensionality reduction technology of generalized discriminant component analysis and its kernelization forms“. Pattern Recognition 124 (April 2022): 108450. http://dx.doi.org/10.1016/j.patcog.2021.108450.
Der volle Inhalt der QuelleCheng, Ning, Hongpo Zhang und Zhanbo Li. „Data sanitization against label flipping attacks using AdaBoost-based semi-supervised learning technology“. Soft Computing 25, Nr. 23 (18.10.2021): 14573–81. http://dx.doi.org/10.1007/s00500-021-06384-y.
Der volle Inhalt der QuelleLopane, Giovanna, Sabato Mellone, Mattia Corzani, Lorenzo Chiari, Pietro Cortelli, Giovanna Calandra-Buonaura und Manuela Contin. „Supervised versus unsupervised technology-based levodopa monitoring in Parkinson’s disease: an intrasubject comparison“. Journal of Neurology 265, Nr. 6 (29.03.2018): 1343–52. http://dx.doi.org/10.1007/s00415-018-8848-1.
Der volle Inhalt der QuelleHuang, Ri Sheng. „Information Technology in an Improved Supervised Locally Linear Embedding for Recognizing Speech Emotion“. Advanced Materials Research 1014 (Juli 2014): 375–78. http://dx.doi.org/10.4028/www.scientific.net/amr.1014.375.
Der volle Inhalt der QuelleRana, Soumya Prakash, Maitreyee Dey, Riccardo Loretoni, Michele Duranti, Mohammad Ghavami, Sandra Dudley und Gianluigi Tiberi. „Radiation-Free Microwave Technology for Breast Lesion Detection Using Supervised Machine Learning Model“. Tomography 9, Nr. 1 (12.01.2023): 105–29. http://dx.doi.org/10.3390/tomography9010010.
Der volle Inhalt der QuelleLiu, Chuang, Kang Su, Long Yang, Jie Li und Jingbo Guo. „Detection of Complex Features of Car Body-in-White under Limited Number of Samples Using Self-Supervised Learning“. Coatings 12, Nr. 5 (29.04.2022): 614. http://dx.doi.org/10.3390/coatings12050614.
Der volle Inhalt der QuelleWang, Jiayan, Zongmin Li, Xujian Qiao, Baodi Liu und Yu Zhao. „Semi-Supervised Few-shot Image Classification Based on Subspace Learning“. Journal of Physics: Conference Series 2171, Nr. 1 (01.01.2022): 012063. http://dx.doi.org/10.1088/1742-6596/2171/1/012063.
Der volle Inhalt der Quelle