Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Surface gravity wave“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Surface gravity wave" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Surface gravity wave"
Pizzo, Nick E. „Surfing surface gravity waves“. Journal of Fluid Mechanics 823 (16.06.2017): 316–28. http://dx.doi.org/10.1017/jfm.2017.314.
Der volle Inhalt der QuelleRobinson, T. O., I. Eames und R. Simons. „Dense gravity currents moving beneath progressive free-surface water waves“. Journal of Fluid Mechanics 725 (23.05.2013): 588–610. http://dx.doi.org/10.1017/jfm.2013.112.
Der volle Inhalt der QuelleDoering, J. C., und A. J. Bowen. „SHOALING SURFACE GRAVITY WAVES: A BISPECTRAL ANALYSIS“. Coastal Engineering Proceedings 1, Nr. 20 (29.01.1986): 12. http://dx.doi.org/10.9753/icce.v20.12.
Der volle Inhalt der QuelleMui, R. C. Y., und D. G. Dommermuth. „The Vortical Structure of Parasitic Capillary Waves“. Journal of Fluids Engineering 117, Nr. 3 (01.09.1995): 355–61. http://dx.doi.org/10.1115/1.2817269.
Der volle Inhalt der QuelleLonguet-Higgins, M. S. „Eulerian and Lagrangian aspects of surface waves“. Journal of Fluid Mechanics 173 (Dezember 1986): 683–707. http://dx.doi.org/10.1017/s0022112086001325.
Der volle Inhalt der QuelleBalk, Alexander M. „Surface gravity wave turbulence: three wave interaction?“ Physics Letters A 314, Nr. 1-2 (Juli 2003): 68–71. http://dx.doi.org/10.1016/s0375-9601(03)00795-3.
Der volle Inhalt der QuelleKenyon, Kern E. „On Surface Gravity Wave Energies“. Natural Science 12, Nr. 10 (2020): 667–69. http://dx.doi.org/10.4236/ns.2020.1210057.
Der volle Inhalt der QuelleColeman, Timothy A., und Kevin R. Knupp. „Factors Affecting Surface Wind Speeds in Gravity Waves and Wake Lows“. Weather and Forecasting 24, Nr. 6 (01.12.2009): 1664–79. http://dx.doi.org/10.1175/2009waf2222248.1.
Der volle Inhalt der QuelleKrasitsky, V. P. „Five-wave kinetic equation for surface gravity waves“. Physical Oceanography 5, Nr. 6 (November 1994): 413–21. http://dx.doi.org/10.1007/bf02198507.
Der volle Inhalt der QuelleRaghukumar, Kaustubha, Lindsay Hogan, Christopher Zappa, Frank Spada und Grace Chang. „Optical detection of ensonified capillary-gravity waves using polarimetric imaging“. Journal of the Acoustical Society of America 153, Nr. 3_supplement (01.03.2023): A64. http://dx.doi.org/10.1121/10.0018177.
Der volle Inhalt der QuelleDissertationen zum Thema "Surface gravity wave"
Thomas, Alexandra Elizabeth. „The interaction of an internal solitary wave with surface gravity waves“. Thesis, University of Edinburgh, 2002. http://hdl.handle.net/1842/13106.
Der volle Inhalt der QuelleChamberlain, Neil. „Wave-induced mixing within a gravity-driven surface current“. Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325566.
Der volle Inhalt der QuelleHowell, David W. „A numerical study of rain-induced surface gravity wave attenuation“. Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/27173.
Der volle Inhalt der Quellevan, den Bremer T. S. „The induced mean flow of surface, internal and interfacial gravity wave groups“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:e735afe7-a77d-455d-a560-e869a9941f69.
Der volle Inhalt der QuelleLin, Yiqiang Farouk Bakhtier. „Acoustic wave induced convection and transport in gases under normal and micro-gravity conditions /“. Philadelphia, Pa. : Drexel University, 2007. http://hdl.handle.net/1860/1795.
Der volle Inhalt der QuelleYarber, Robert K. „Development and calibration of two and four wire water surface wave height measurement systems“. Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23863.
Der volle Inhalt der QuelleCapacitance and conductance measurements using two and four wire techniques were developed and statically and dynamically calibrated in this thesis. The voltage sensitivities range from 7.3 to 8.1 ± 0.1 mV/cm for the two wire capacitance system static calibrations. This is ± 5.2% of the limiting theoretical value. The voltage sensitivities range from 0.3 to 0.4 ± 0.1 V/cm for the four wire conductance system static calibrations. Dynamic calibrations were only completed for the conductance system. The dynamic calibration results were weakly frequency dependent with a qj-0.15 decay in a limited, 2-4 Hz range. Wind power spectrum measurements were taken in the existing Upper Ocean Simulations Facility at the Naval Postgraduate School. There was excellent agreement in the spectra with both techniques. Driven gravity wave frequency downshifting and wind energy dumping was observed in the combined gravity wave and wind-wave measurements. The power spectra peaked near two Hertz and decayed at 50 to 70 dB per decade, or as CO -5 to G)" 7 for both systems. Gravity wave phase speed and wavelength measurements were performed with the capacitance system. The results were approximately 40% higher than theory.
http://archive.org/details/developmentcalib00yarb
McAllister, Mark Laing. „Analysis of laboratory and field measurements of directionally spread nonlinear ocean waves“. Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28762.
Der volle Inhalt der QuelleParmhed, Oskar. „Near surface atmospheric flow over high latitude glaciers“. Doctoral thesis, Stockholm University, Department of Meteorology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-197.
Der volle Inhalt der QuelleIn this thesis various descriptions of the near surface atmospheric flow over a high latitude glacier is used in an effort to increase our understanding of the basic flow dynamics there.
Through their contribution to sea-level change, mountain glaciers play a significant role in Earth’s climate system. Properties of the near surface atmospheric flow are important for understanding glacier response to climate change.
Here, the near surface atmospheric flow is studied from several perspectives including the effects of both rotation and slope. Rotation is an important aspect of most atmospheric flows and its significance for mesoscale flows have gained recognition over the last years. Similarly, the very stable boundary layer (VSBL) has lately gained interest. Within a VSBL over sloping terrain katabatic flow is known to be usual and persistent. For the present thesis a combination of numerical and simple analytical models as well as observations from the Vatnajökull glacier on Iceland have been used. The models have continuously been compared to available observations. Three different approaches have been used: linear wave modeling, analytic modeling of katabatic flow and of the Ekman layer, and numerical simulations of the katabatic flow using a state of the art mesoscale model. The analytic models for the katabatic flow and the Ekman layer used in this thesis both utilizes the WKB method to allow the eddy diffusivity to vary with height. This considerably improves the results of the models. Among other findings it is concluded that: a large part of the flow can be explained by linear theory, that good results can be obtained for surface energy flux using simple models, and that the very simple analytic models for the katabatic flow and the Ekman layer can perform adequately if the restraint of constant eddy diffusivity is relieved.
Kupčíková, Laura. „Částice plovoucí na volné hladině vln“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444637.
Der volle Inhalt der QuelleChapalain, Georges. „Étude hydrodynamique et sédimentaire des environnements littoraux dominés par la houle“. Université Joseph Fourier (Grenoble ; 1971-2015), 1988. http://www.theses.fr/1988GRE10121.
Der volle Inhalt der QuelleBücher zum Thema "Surface gravity wave"
Howell, David W. A numerical study of rain-induced surface gravity wave attenuation. Monterey, Calif: Naval Postgraduate School, 1989.
Den vollen Inhalt der Quelle findenVanden-Broeck, J. M. Gravity-capillary free-surface flows. New York: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenVanden-Broeck, J. M. Gravity-capillary free-surface flows. New York: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenKeeley, J. R. SAR sensitivities to surface gravity waves. Ottawa: Department of Fisheries and Oceans, 1992.
Den vollen Inhalt der Quelle findenAgnon, Yehuda. Nonlinear diffraction of ocean gravity waves. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1986.
Den vollen Inhalt der Quelle findenLawrence, Richard T. Experimental inquires into collective sea state modes in deep water surface gravity waves. Monterey, Calif: Naval Postgraduate School, 1992.
Den vollen Inhalt der Quelle findenAbou-Taleb, A. A. A microwave model for investigating first and second order electromagnetic scattering from gravity water waves on the surface. Birmingham: University of Birmingham, 1985.
Den vollen Inhalt der Quelle findenZeitlin, Vladimir. Rotating Shallow-Water Models with Moist Convection. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0015.
Der volle Inhalt der QuelleGravity-capillary Free Surface Flows (Cambridge Monographs on Mechanics). Cambridge University Press, 2008.
Den vollen Inhalt der Quelle findenFerriole, Mary Ann. Laboratory observations of the evolution of surface-gravity waves through the shoaling and breaking regions and the surf zone. 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Surface gravity wave"
Harger, Robert O. „The SAR Image of Short Gravity Waves On a Long Gravity Wave“. In Wave Dynamics and Radio Probing of the Ocean Surface, 371–92. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8980-4_26.
Der volle Inhalt der QuelleHasselmann, D., J. Bösenberg, M. Dunckel, K. Richter, M. Grünewald und H. Carlson. „Measurements of Wave-Induced Pressure over Surface Gravity Waves“. In Wave Dynamics and Radio Probing of the Ocean Surface, 353–68. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8980-4_25.
Der volle Inhalt der QuelleKwoh, Daniel S. W., und Bruce M. Lake. „Microwave Scattering from Short Gravity Waves“. In Wave Dynamics and Radio Probing of the Ocean Surface, 443–47. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8980-4_30.
Der volle Inhalt der QuelleMasuda, Akira. „Nonlinear Energy Transfer between Random Gravity Waves“. In Wave Dynamics and Radio Probing of the Ocean Surface, 41–57. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8980-4_3.
Der volle Inhalt der QuelleSu, Ming-Yang, und Albert W. Green. „Experimental Studies of Strong Nonlinear Interactions of Deep-Water Gravity Waves“. In Wave Dynamics and Radio Probing of the Ocean Surface, 231–53. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8980-4_15.
Der volle Inhalt der QuelleHuang, Norden E., Steven R. Long und Larry F. Bliven. „An Experimental Study of the Statistical Properties of Wind-Generated Gravity Waves“. In Wave Dynamics and Radio Probing of the Ocean Surface, 129–44. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8980-4_8.
Der volle Inhalt der QuelleChristiansen, Søren. „A Stability Analysis of a Eulerian Method for Some Surface Gravity Wave Problems“. In Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications, 75–84. Wiesbaden: Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-87869-4_8.
Der volle Inhalt der QuelleMiles, Alan J., und B. Roberts. „Magnetoacoustic-Gravity Surface Waves“. In Mechanisms of Chromospheric and Coronal Heating, 508–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_84.
Der volle Inhalt der QuelleLonguet-Higgins, M. S. „A New Way to Calculate Steep Gravity Waves“. In The Ocean Surface, 1–15. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-7717-5_1.
Der volle Inhalt der QuellePedlosky, Joseph. „Equations of Motion; Surface Gravity Waves“. In Waves in the Ocean and Atmosphere, 19–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Surface gravity wave"
Fu, Shenhe, Yuval Tsur, Jianying Zhou, Lev Shemer und Ady Arie. „Surface Gravity Water Wave Airy Wavepacket“. In Laser Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ls.2015.lth1h.1.
Der volle Inhalt der QuelleClement, Eric, Lenaic Bonneau, Bruno Andreotti, Masami Nakagawa und Stefan Luding. „Surface wave acoustics of granular packing under gravity“. In POWDERS AND GRAINS 2009: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON MICROMECHANICS OF GRANULAR MEDIA. AIP, 2009. http://dx.doi.org/10.1063/1.3179945.
Der volle Inhalt der QuelleGade, Martin, Thomas Alexander Grobelny und Detlef Stammer. „Multi-polarization scatterometer measurements of long surface gravity wave breaking“. In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6947022.
Der volle Inhalt der QuelleDimas, Athanassios A. „Large-Wave Simulation of Surface Tension Effect on Weak Spilling Breakers“. In ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2005. http://dx.doi.org/10.1115/omae2005-67278.
Der volle Inhalt der QuelleRoland Kjærgaard Qwist, Jesper, und Erik Damgaard Christensen. „Solitary Wave Propagation Using a Novel Single Fluid Finite Volume Method for Free Surface Gravity Waves“. In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-80255.
Der volle Inhalt der QuelleHayashi, Koichi, Akinori Okada, Toshifumi Matsuoka und Hideki Hatakeyama. „Joint Analysis of a Surface‐Wave Method and a Micro‐Gravity Survey“. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2004. Environment and Engineering Geophysical Society, 2004. http://dx.doi.org/10.4133/1.2923309.
Der volle Inhalt der QuelleHayashi, Koichi, Akinori Okada, Toshifumi Matsuoka und Hideki Hatakeyama. „Joint Analysis Of A Surface-Wave Method And A Micro-Gravity Survey“. In 17th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.186.sur09.
Der volle Inhalt der QuelleCalder, A. C. „Mixing by Non-linear Gravity Wave Breaking on a White Dwarf Surface“. In CLASSICAL NOVA EXPLOSIONS: International Conference on Classical Nova Explosions. AIP, 2002. http://dx.doi.org/10.1063/1.1518190.
Der volle Inhalt der QuelleRoos, Jannicke, Chris Swan und Sverre Haver. „Wave Impacts on the Column of a Gravity Based Structure“. In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20648.
Der volle Inhalt der QuelleBredmose, H., J. Skourup, E. A. Hansen, E. D. Christensen, L. M. Pedersen und A. Mitzlaff. „Numerical Reproduction of Extreme Wave Loads on a Gravity Wind Turbine Foundation“. In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92258.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Surface gravity wave"
Guza, R. T. Surface Gravity Waves And Ambient Microseismic Noise. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada256498.
Der volle Inhalt der QuelleHara, Tetsu. Interaction Between Surface Gravity Waves and Near Surface Atmospheric Turbulence. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada634931.
Der volle Inhalt der QuelleSullivan, Peter P., James C. McWilliams und Chin-Hoh Moeng. Surface Gravity Waves and Coupled Marine Boundary Layers. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada625363.
Der volle Inhalt der QuelleGuza, Robert T. Surface Gravity Waves on the Continental Shelf and Beach. Fort Belvoir, VA: Defense Technical Information Center, Februar 2001. http://dx.doi.org/10.21236/ada389276.
Der volle Inhalt der QuelleKo, Dong S. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1013704.
Der volle Inhalt der QuelleVan Roekel, Luke, Erin Thomas und Olawale Ikuyajolu. Enabling studies of long term climate effects from surface gravity waves. Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1968204.
Der volle Inhalt der QuelleStreet, Robert L. Large Eddy Simulation of Sediment Transport in the Presence of Surface Gravity Waves, Currents and Complex Bedforms. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada627539.
Der volle Inhalt der QuelleStreet, Robert L. Large Eddy Simulation of Sediment Transport in the Presence of Surface Gravity Waves, Currents and Complex Bedforms. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada628143.
Der volle Inhalt der QuelleMcWilliams, James C., und Yusuke Uchiyama. The Effects of Surface Gravity Waves on Coastal Currents: Implementation, Phenomenological Exploration, and Realistic Simulation with ROMS. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573291.
Der volle Inhalt der QuelleStreet, Robert L. Large Eddy Simulation of Sediment Transport in the Presence of Surface Gravity Waves, Currents and Complex Bedforms. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada626196.
Der volle Inhalt der Quelle